The irreducible unitary representations of the extended Poincaré group in (1+1) dimensions

We prove that the extended Poincaré group in (1+1) dimensions P̄ is non-nilpotent solvable exponential, and therefore that it belongs to type I. We determine its first and second cohomology groups in order to work out a classification of the two-dimensional relativistic elementary systems. Moreover,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2004-03, Vol.45 (3), p.1156-1167
Hauptverfasser: de Mello, R. O., Rivelles, V. O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1167
container_issue 3
container_start_page 1156
container_title Journal of mathematical physics
container_volume 45
creator de Mello, R. O.
Rivelles, V. O.
description We prove that the extended Poincaré group in (1+1) dimensions P̄ is non-nilpotent solvable exponential, and therefore that it belongs to type I. We determine its first and second cohomology groups in order to work out a classification of the two-dimensional relativistic elementary systems. Moreover, all irreducible unitary representations of P̄ are constructed by the orbit method. The most physically interesting class of irreducible representations corresponds to the anomaly-free relativistic particle in (1+1) dimensions, which cannot be fully quantized. However, we show that the corresponding coadjoint orbit of P̄ determines a covariant maximal polynomial quantization by unbounded operators, which is enough to ensure that the associated quantum dynamical problem can be consistently solved, thus providing a physical interpretation for this particular class of representations.
doi_str_mv 10.1063/1.1644901
format Article
fullrecord <record><control><sourceid>scitation_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_16119437</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jmp</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-65b993bb60f8993bd1c8f2eb6a17d674eccd5a110f08e1796bb1e08706a7d0463</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKsL3yAbwQtTc2bSJLOU4g0KuqgrF0MmOdFImxmSqegj-Ry-mC1T7EJwdc7i-3_O-Qg5BjYCJopLGIHgvGSwQwbAVJlJMVa7ZMBYnmc5V2qfHKT0xhiA4nxAnmevSH2MaJfG13Oky-A7HT9pxDZiwtDpzjch0cbRboXiR4fBoqWPjQ9Gx-8v-hKbZUt9oKdwAWfU-gWGtM4ckj2n5wmPNnNInm6uZ5O7bPpwez-5mmamyGWXiXFdlkVdC-bUerFglMuxFhqkFZKjMXasAZhjCkGWoq4BmZJMaGkZF8WQnPW9JjYpRXRVG_1i9UQFrFpbqaDaWFmxJz3b6mT03EUdjE_bgAAoeSFX3HnPJeN7Bb_MexO3hVVr3X_w3wt-AEMXfjU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The irreducible unitary representations of the extended Poincaré group in (1+1) dimensions</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><creator>de Mello, R. O. ; Rivelles, V. O.</creator><creatorcontrib>de Mello, R. O. ; Rivelles, V. O.</creatorcontrib><description>We prove that the extended Poincaré group in (1+1) dimensions P̄ is non-nilpotent solvable exponential, and therefore that it belongs to type I. We determine its first and second cohomology groups in order to work out a classification of the two-dimensional relativistic elementary systems. Moreover, all irreducible unitary representations of P̄ are constructed by the orbit method. The most physically interesting class of irreducible representations corresponds to the anomaly-free relativistic particle in (1+1) dimensions, which cannot be fully quantized. However, we show that the corresponding coadjoint orbit of P̄ determines a covariant maximal polynomial quantization by unbounded operators, which is enough to ensure that the associated quantum dynamical problem can be consistently solved, thus providing a physical interpretation for this particular class of representations.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.1644901</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>Melville, NY: American Institute of Physics</publisher><subject>Exact sciences and technology ; Mathematical methods in physics ; Mathematics ; Physics ; Sciences and techniques of general use</subject><ispartof>Journal of mathematical physics, 2004-03, Vol.45 (3), p.1156-1167</ispartof><rights>American Institute of Physics</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-65b993bb60f8993bd1c8f2eb6a17d674eccd5a110f08e1796bb1e08706a7d0463</citedby><cites>FETCH-LOGICAL-c327t-65b993bb60f8993bd1c8f2eb6a17d674eccd5a110f08e1796bb1e08706a7d0463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.1644901$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,1553,4498,27901,27902,76126,76132</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16119437$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>de Mello, R. O.</creatorcontrib><creatorcontrib>Rivelles, V. O.</creatorcontrib><title>The irreducible unitary representations of the extended Poincaré group in (1+1) dimensions</title><title>Journal of mathematical physics</title><description>We prove that the extended Poincaré group in (1+1) dimensions P̄ is non-nilpotent solvable exponential, and therefore that it belongs to type I. We determine its first and second cohomology groups in order to work out a classification of the two-dimensional relativistic elementary systems. Moreover, all irreducible unitary representations of P̄ are constructed by the orbit method. The most physically interesting class of irreducible representations corresponds to the anomaly-free relativistic particle in (1+1) dimensions, which cannot be fully quantized. However, we show that the corresponding coadjoint orbit of P̄ determines a covariant maximal polynomial quantization by unbounded operators, which is enough to ensure that the associated quantum dynamical problem can be consistently solved, thus providing a physical interpretation for this particular class of representations.</description><subject>Exact sciences and technology</subject><subject>Mathematical methods in physics</subject><subject>Mathematics</subject><subject>Physics</subject><subject>Sciences and techniques of general use</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWKsL3yAbwQtTc2bSJLOU4g0KuqgrF0MmOdFImxmSqegj-Ry-mC1T7EJwdc7i-3_O-Qg5BjYCJopLGIHgvGSwQwbAVJlJMVa7ZMBYnmc5V2qfHKT0xhiA4nxAnmevSH2MaJfG13Oky-A7HT9pxDZiwtDpzjch0cbRboXiR4fBoqWPjQ9Gx-8v-hKbZUt9oKdwAWfU-gWGtM4ckj2n5wmPNnNInm6uZ5O7bPpwez-5mmamyGWXiXFdlkVdC-bUerFglMuxFhqkFZKjMXasAZhjCkGWoq4BmZJMaGkZF8WQnPW9JjYpRXRVG_1i9UQFrFpbqaDaWFmxJz3b6mT03EUdjE_bgAAoeSFX3HnPJeN7Bb_MexO3hVVr3X_w3wt-AEMXfjU</recordid><startdate>20040301</startdate><enddate>20040301</enddate><creator>de Mello, R. O.</creator><creator>Rivelles, V. O.</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20040301</creationdate><title>The irreducible unitary representations of the extended Poincaré group in (1+1) dimensions</title><author>de Mello, R. O. ; Rivelles, V. O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-65b993bb60f8993bd1c8f2eb6a17d674eccd5a110f08e1796bb1e08706a7d0463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Exact sciences and technology</topic><topic>Mathematical methods in physics</topic><topic>Mathematics</topic><topic>Physics</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Mello, R. O.</creatorcontrib><creatorcontrib>Rivelles, V. O.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Mello, R. O.</au><au>Rivelles, V. O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The irreducible unitary representations of the extended Poincaré group in (1+1) dimensions</atitle><jtitle>Journal of mathematical physics</jtitle><date>2004-03-01</date><risdate>2004</risdate><volume>45</volume><issue>3</issue><spage>1156</spage><epage>1167</epage><pages>1156-1167</pages><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>We prove that the extended Poincaré group in (1+1) dimensions P̄ is non-nilpotent solvable exponential, and therefore that it belongs to type I. We determine its first and second cohomology groups in order to work out a classification of the two-dimensional relativistic elementary systems. Moreover, all irreducible unitary representations of P̄ are constructed by the orbit method. The most physically interesting class of irreducible representations corresponds to the anomaly-free relativistic particle in (1+1) dimensions, which cannot be fully quantized. However, we show that the corresponding coadjoint orbit of P̄ determines a covariant maximal polynomial quantization by unbounded operators, which is enough to ensure that the associated quantum dynamical problem can be consistently solved, thus providing a physical interpretation for this particular class of representations.</abstract><cop>Melville, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.1644901</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2488
ispartof Journal of mathematical physics, 2004-03, Vol.45 (3), p.1156-1167
issn 0022-2488
1089-7658
language eng
recordid cdi_pascalfrancis_primary_16119437
source AIP Journals Complete; AIP Digital Archive
subjects Exact sciences and technology
Mathematical methods in physics
Mathematics
Physics
Sciences and techniques of general use
title The irreducible unitary representations of the extended Poincaré group in (1+1) dimensions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T01%3A14%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20irreducible%20unitary%20representations%20of%20the%20extended%20Poincar%C3%A9%20group%20in%20(1+1)%20dimensions&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=de%20Mello,%20R.%20O.&rft.date=2004-03-01&rft.volume=45&rft.issue=3&rft.spage=1156&rft.epage=1167&rft.pages=1156-1167&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.1644901&rft_dat=%3Cscitation_pasca%3Ejmp%3C/scitation_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true