The irreducible unitary representations of the extended Poincaré group in (1+1) dimensions
We prove that the extended Poincaré group in (1+1) dimensions P̄ is non-nilpotent solvable exponential, and therefore that it belongs to type I. We determine its first and second cohomology groups in order to work out a classification of the two-dimensional relativistic elementary systems. Moreover,...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical physics 2004-03, Vol.45 (3), p.1156-1167 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1167 |
---|---|
container_issue | 3 |
container_start_page | 1156 |
container_title | Journal of mathematical physics |
container_volume | 45 |
creator | de Mello, R. O. Rivelles, V. O. |
description | We prove that the extended Poincaré group in
(1+1)
dimensions
P̄
is non-nilpotent solvable exponential, and therefore that it belongs to type I. We determine its first and second cohomology groups in order to work out a classification of the two-dimensional relativistic elementary systems. Moreover, all irreducible unitary representations of
P̄
are constructed by the orbit method. The most physically interesting class of irreducible representations corresponds to the anomaly-free relativistic particle in
(1+1)
dimensions, which cannot be fully quantized. However, we show that the corresponding coadjoint orbit of
P̄
determines a covariant maximal polynomial quantization by unbounded operators, which is enough to ensure that the associated quantum dynamical problem can be consistently solved, thus providing a physical interpretation for this particular class of representations. |
doi_str_mv | 10.1063/1.1644901 |
format | Article |
fullrecord | <record><control><sourceid>scitation_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_16119437</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jmp</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-65b993bb60f8993bd1c8f2eb6a17d674eccd5a110f08e1796bb1e08706a7d0463</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKsL3yAbwQtTc2bSJLOU4g0KuqgrF0MmOdFImxmSqegj-Ry-mC1T7EJwdc7i-3_O-Qg5BjYCJopLGIHgvGSwQwbAVJlJMVa7ZMBYnmc5V2qfHKT0xhiA4nxAnmevSH2MaJfG13Oky-A7HT9pxDZiwtDpzjch0cbRboXiR4fBoqWPjQ9Gx-8v-hKbZUt9oKdwAWfU-gWGtM4ckj2n5wmPNnNInm6uZ5O7bPpwez-5mmamyGWXiXFdlkVdC-bUerFglMuxFhqkFZKjMXasAZhjCkGWoq4BmZJMaGkZF8WQnPW9JjYpRXRVG_1i9UQFrFpbqaDaWFmxJz3b6mT03EUdjE_bgAAoeSFX3HnPJeN7Bb_MexO3hVVr3X_w3wt-AEMXfjU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The irreducible unitary representations of the extended Poincaré group in (1+1) dimensions</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><creator>de Mello, R. O. ; Rivelles, V. O.</creator><creatorcontrib>de Mello, R. O. ; Rivelles, V. O.</creatorcontrib><description>We prove that the extended Poincaré group in
(1+1)
dimensions
P̄
is non-nilpotent solvable exponential, and therefore that it belongs to type I. We determine its first and second cohomology groups in order to work out a classification of the two-dimensional relativistic elementary systems. Moreover, all irreducible unitary representations of
P̄
are constructed by the orbit method. The most physically interesting class of irreducible representations corresponds to the anomaly-free relativistic particle in
(1+1)
dimensions, which cannot be fully quantized. However, we show that the corresponding coadjoint orbit of
P̄
determines a covariant maximal polynomial quantization by unbounded operators, which is enough to ensure that the associated quantum dynamical problem can be consistently solved, thus providing a physical interpretation for this particular class of representations.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.1644901</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>Melville, NY: American Institute of Physics</publisher><subject>Exact sciences and technology ; Mathematical methods in physics ; Mathematics ; Physics ; Sciences and techniques of general use</subject><ispartof>Journal of mathematical physics, 2004-03, Vol.45 (3), p.1156-1167</ispartof><rights>American Institute of Physics</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-65b993bb60f8993bd1c8f2eb6a17d674eccd5a110f08e1796bb1e08706a7d0463</citedby><cites>FETCH-LOGICAL-c327t-65b993bb60f8993bd1c8f2eb6a17d674eccd5a110f08e1796bb1e08706a7d0463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.1644901$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,1553,4498,27901,27902,76126,76132</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16119437$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>de Mello, R. O.</creatorcontrib><creatorcontrib>Rivelles, V. O.</creatorcontrib><title>The irreducible unitary representations of the extended Poincaré group in (1+1) dimensions</title><title>Journal of mathematical physics</title><description>We prove that the extended Poincaré group in
(1+1)
dimensions
P̄
is non-nilpotent solvable exponential, and therefore that it belongs to type I. We determine its first and second cohomology groups in order to work out a classification of the two-dimensional relativistic elementary systems. Moreover, all irreducible unitary representations of
P̄
are constructed by the orbit method. The most physically interesting class of irreducible representations corresponds to the anomaly-free relativistic particle in
(1+1)
dimensions, which cannot be fully quantized. However, we show that the corresponding coadjoint orbit of
P̄
determines a covariant maximal polynomial quantization by unbounded operators, which is enough to ensure that the associated quantum dynamical problem can be consistently solved, thus providing a physical interpretation for this particular class of representations.</description><subject>Exact sciences and technology</subject><subject>Mathematical methods in physics</subject><subject>Mathematics</subject><subject>Physics</subject><subject>Sciences and techniques of general use</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWKsL3yAbwQtTc2bSJLOU4g0KuqgrF0MmOdFImxmSqegj-Ry-mC1T7EJwdc7i-3_O-Qg5BjYCJopLGIHgvGSwQwbAVJlJMVa7ZMBYnmc5V2qfHKT0xhiA4nxAnmevSH2MaJfG13Oky-A7HT9pxDZiwtDpzjch0cbRboXiR4fBoqWPjQ9Gx-8v-hKbZUt9oKdwAWfU-gWGtM4ckj2n5wmPNnNInm6uZ5O7bPpwez-5mmamyGWXiXFdlkVdC-bUerFglMuxFhqkFZKjMXasAZhjCkGWoq4BmZJMaGkZF8WQnPW9JjYpRXRVG_1i9UQFrFpbqaDaWFmxJz3b6mT03EUdjE_bgAAoeSFX3HnPJeN7Bb_MexO3hVVr3X_w3wt-AEMXfjU</recordid><startdate>20040301</startdate><enddate>20040301</enddate><creator>de Mello, R. O.</creator><creator>Rivelles, V. O.</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20040301</creationdate><title>The irreducible unitary representations of the extended Poincaré group in (1+1) dimensions</title><author>de Mello, R. O. ; Rivelles, V. O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-65b993bb60f8993bd1c8f2eb6a17d674eccd5a110f08e1796bb1e08706a7d0463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Exact sciences and technology</topic><topic>Mathematical methods in physics</topic><topic>Mathematics</topic><topic>Physics</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Mello, R. O.</creatorcontrib><creatorcontrib>Rivelles, V. O.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Mello, R. O.</au><au>Rivelles, V. O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The irreducible unitary representations of the extended Poincaré group in (1+1) dimensions</atitle><jtitle>Journal of mathematical physics</jtitle><date>2004-03-01</date><risdate>2004</risdate><volume>45</volume><issue>3</issue><spage>1156</spage><epage>1167</epage><pages>1156-1167</pages><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>We prove that the extended Poincaré group in
(1+1)
dimensions
P̄
is non-nilpotent solvable exponential, and therefore that it belongs to type I. We determine its first and second cohomology groups in order to work out a classification of the two-dimensional relativistic elementary systems. Moreover, all irreducible unitary representations of
P̄
are constructed by the orbit method. The most physically interesting class of irreducible representations corresponds to the anomaly-free relativistic particle in
(1+1)
dimensions, which cannot be fully quantized. However, we show that the corresponding coadjoint orbit of
P̄
determines a covariant maximal polynomial quantization by unbounded operators, which is enough to ensure that the associated quantum dynamical problem can be consistently solved, thus providing a physical interpretation for this particular class of representations.</abstract><cop>Melville, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.1644901</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2488 |
ispartof | Journal of mathematical physics, 2004-03, Vol.45 (3), p.1156-1167 |
issn | 0022-2488 1089-7658 |
language | eng |
recordid | cdi_pascalfrancis_primary_16119437 |
source | AIP Journals Complete; AIP Digital Archive |
subjects | Exact sciences and technology Mathematical methods in physics Mathematics Physics Sciences and techniques of general use |
title | The irreducible unitary representations of the extended Poincaré group in (1+1) dimensions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T01%3A14%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20irreducible%20unitary%20representations%20of%20the%20extended%20Poincar%C3%A9%20group%20in%20(1+1)%20dimensions&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=de%20Mello,%20R.%20O.&rft.date=2004-03-01&rft.volume=45&rft.issue=3&rft.spage=1156&rft.epage=1167&rft.pages=1156-1167&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.1644901&rft_dat=%3Cscitation_pasca%3Ejmp%3C/scitation_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |