Elimination of Quantifiers and Undecidability in Spatial Logics for Concurrency

Aiming at a deeper understanding of the essence of spatial logics for concurrency, we study a minimal spatial logic without quantifiers or any operators talking about names. The logic just includes the basic spatial operators void, composition and its adjunct, and the next step modality; for the mod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Caires, Luís, Lozes, Étienne
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 257
container_issue
container_start_page 240
container_title
container_volume
creator Caires, Luís
Lozes, Étienne
description Aiming at a deeper understanding of the essence of spatial logics for concurrency, we study a minimal spatial logic without quantifiers or any operators talking about names. The logic just includes the basic spatial operators void, composition and its adjunct, and the next step modality; for the model we consider a tiny fragment of CCS. We show that this core logic can already encode its own extension with quantifiers, and modalities for actions. From this result, we derive several consequences. Firstly, we establish the intensionality of the logic, we characterize the equivalence it induces on processes, and we derive characteristic formulas. Secondly, we show that, unlike in static spatial logics, the composition adjunct adds to the expressiveness of the logic, so that adjunct elimination is not possible for dynamic spatial logics, even quantifier-free. Finally, we prove that both model-checking and satisfiability problems are undecidable in our logic. We also conclude that our results extend to other calculi, namely the π-calculus and the ambient calculus.
doi_str_mv 10.1007/978-3-540-28644-8_16
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_16107848</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16107848</sourcerecordid><originalsourceid>FETCH-LOGICAL-p228t-f5b1a3a210e52e94850cb722bd837e10dbcb34bc357c12d8585182d86895ba773</originalsourceid><addsrcrecordid>eNotkMtqwzAQRdUX1E3zB11o06VaPS15WUL6gEAobdZCkuWg1pGN5Czy91WSzubC3MMwHAAeCH4iGMvnRirEkOAYUVVzjpQm9QW4Y2VzWtSXoCI1IYgx3lyBeeFPHW04ltegwgxT1EjObsE85x9chlDFJK3AetmHXYhmCkOEQwc_9yZOoQs-ZWhiCzex9S60xoY-TAcYIvwaC2x6uBq2wWXYDQkuhuj2KfnoDvfgpjN99vP_nIHN6_J78Y5W67ePxcsKjZSqCXXCEsMMJdgL6huuBHZWUmrb8pYnuLXOMm4dE9IR2iqhBFEla9UIa6RkM_B4vjua7EzfJRNdyHpMYWfSofghWCquCkfPXC5V3Pqk7TD8Zk2wPqrVRZVmusjSJ5P6qJb9AUiGZuY</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Elimination of Quantifiers and Undecidability in Spatial Logics for Concurrency</title><source>Springer Books</source><creator>Caires, Luís ; Lozes, Étienne</creator><contributor>Gardner, Philippa ; Yoshida, Nobuko</contributor><creatorcontrib>Caires, Luís ; Lozes, Étienne ; Gardner, Philippa ; Yoshida, Nobuko</creatorcontrib><description>Aiming at a deeper understanding of the essence of spatial logics for concurrency, we study a minimal spatial logic without quantifiers or any operators talking about names. The logic just includes the basic spatial operators void, composition and its adjunct, and the next step modality; for the model we consider a tiny fragment of CCS. We show that this core logic can already encode its own extension with quantifiers, and modalities for actions. From this result, we derive several consequences. Firstly, we establish the intensionality of the logic, we characterize the equivalence it induces on processes, and we derive characteristic formulas. Secondly, we show that, unlike in static spatial logics, the composition adjunct adds to the expressiveness of the logic, so that adjunct elimination is not possible for dynamic spatial logics, even quantifier-free. Finally, we prove that both model-checking and satisfiability problems are undecidable in our logic. We also conclude that our results extend to other calculi, namely the π-calculus and the ambient calculus.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540229407</identifier><identifier>ISBN: 354022940X</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540286446</identifier><identifier>EISBN: 9783540286448</identifier><identifier>DOI: 10.1007/978-3-540-28644-8_16</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Action Modality ; Applied sciences ; Closed Formula ; Computer science; control theory; systems ; Exact sciences and technology ; Free Variable ; Separation Logic ; Separation Power ; Software ; Software engineering</subject><ispartof>CONCUR 2004 - Concurrency Theory, 2004, p.240-257</ispartof><rights>Springer-Verlag Berlin Heidelberg 2004</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/978-3-540-28644-8_16$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/978-3-540-28644-8_16$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4036,4037,27902,38232,41418,42487</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16107848$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Gardner, Philippa</contributor><contributor>Yoshida, Nobuko</contributor><creatorcontrib>Caires, Luís</creatorcontrib><creatorcontrib>Lozes, Étienne</creatorcontrib><title>Elimination of Quantifiers and Undecidability in Spatial Logics for Concurrency</title><title>CONCUR 2004 - Concurrency Theory</title><description>Aiming at a deeper understanding of the essence of spatial logics for concurrency, we study a minimal spatial logic without quantifiers or any operators talking about names. The logic just includes the basic spatial operators void, composition and its adjunct, and the next step modality; for the model we consider a tiny fragment of CCS. We show that this core logic can already encode its own extension with quantifiers, and modalities for actions. From this result, we derive several consequences. Firstly, we establish the intensionality of the logic, we characterize the equivalence it induces on processes, and we derive characteristic formulas. Secondly, we show that, unlike in static spatial logics, the composition adjunct adds to the expressiveness of the logic, so that adjunct elimination is not possible for dynamic spatial logics, even quantifier-free. Finally, we prove that both model-checking and satisfiability problems are undecidable in our logic. We also conclude that our results extend to other calculi, namely the π-calculus and the ambient calculus.</description><subject>Action Modality</subject><subject>Applied sciences</subject><subject>Closed Formula</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Free Variable</subject><subject>Separation Logic</subject><subject>Separation Power</subject><subject>Software</subject><subject>Software engineering</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540229407</isbn><isbn>354022940X</isbn><isbn>3540286446</isbn><isbn>9783540286448</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2004</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkMtqwzAQRdUX1E3zB11o06VaPS15WUL6gEAobdZCkuWg1pGN5Czy91WSzubC3MMwHAAeCH4iGMvnRirEkOAYUVVzjpQm9QW4Y2VzWtSXoCI1IYgx3lyBeeFPHW04ltegwgxT1EjObsE85x9chlDFJK3AetmHXYhmCkOEQwc_9yZOoQs-ZWhiCzex9S60xoY-TAcYIvwaC2x6uBq2wWXYDQkuhuj2KfnoDvfgpjN99vP_nIHN6_J78Y5W67ePxcsKjZSqCXXCEsMMJdgL6huuBHZWUmrb8pYnuLXOMm4dE9IR2iqhBFEla9UIa6RkM_B4vjua7EzfJRNdyHpMYWfSofghWCquCkfPXC5V3Pqk7TD8Zk2wPqrVRZVmusjSJ5P6qJb9AUiGZuY</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Caires, Luís</creator><creator>Lozes, Étienne</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2004</creationdate><title>Elimination of Quantifiers and Undecidability in Spatial Logics for Concurrency</title><author>Caires, Luís ; Lozes, Étienne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p228t-f5b1a3a210e52e94850cb722bd837e10dbcb34bc357c12d8585182d86895ba773</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Action Modality</topic><topic>Applied sciences</topic><topic>Closed Formula</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Free Variable</topic><topic>Separation Logic</topic><topic>Separation Power</topic><topic>Software</topic><topic>Software engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Caires, Luís</creatorcontrib><creatorcontrib>Lozes, Étienne</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Caires, Luís</au><au>Lozes, Étienne</au><au>Gardner, Philippa</au><au>Yoshida, Nobuko</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Elimination of Quantifiers and Undecidability in Spatial Logics for Concurrency</atitle><btitle>CONCUR 2004 - Concurrency Theory</btitle><date>2004</date><risdate>2004</risdate><spage>240</spage><epage>257</epage><pages>240-257</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540229407</isbn><isbn>354022940X</isbn><eisbn>3540286446</eisbn><eisbn>9783540286448</eisbn><abstract>Aiming at a deeper understanding of the essence of spatial logics for concurrency, we study a minimal spatial logic without quantifiers or any operators talking about names. The logic just includes the basic spatial operators void, composition and its adjunct, and the next step modality; for the model we consider a tiny fragment of CCS. We show that this core logic can already encode its own extension with quantifiers, and modalities for actions. From this result, we derive several consequences. Firstly, we establish the intensionality of the logic, we characterize the equivalence it induces on processes, and we derive characteristic formulas. Secondly, we show that, unlike in static spatial logics, the composition adjunct adds to the expressiveness of the logic, so that adjunct elimination is not possible for dynamic spatial logics, even quantifier-free. Finally, we prove that both model-checking and satisfiability problems are undecidable in our logic. We also conclude that our results extend to other calculi, namely the π-calculus and the ambient calculus.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/978-3-540-28644-8_16</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof CONCUR 2004 - Concurrency Theory, 2004, p.240-257
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_16107848
source Springer Books
subjects Action Modality
Applied sciences
Closed Formula
Computer science
control theory
systems
Exact sciences and technology
Free Variable
Separation Logic
Separation Power
Software
Software engineering
title Elimination of Quantifiers and Undecidability in Spatial Logics for Concurrency
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T10%3A28%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Elimination%20of%20Quantifiers%20and%20Undecidability%20in%20Spatial%20Logics%20for%20Concurrency&rft.btitle=CONCUR%202004%20-%20Concurrency%20Theory&rft.au=Caires,%20Lu%C3%ADs&rft.date=2004&rft.spage=240&rft.epage=257&rft.pages=240-257&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540229407&rft.isbn_list=354022940X&rft_id=info:doi/10.1007/978-3-540-28644-8_16&rft_dat=%3Cpascalfrancis_sprin%3E16107848%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540286446&rft.eisbn_list=9783540286448&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true