An Extensional Spatial Logic for Mobile Processes

Existing spatial logics for concurrency are intensional, in the sense that they induce an equivalence that coincides with structural congruence. In this work, we study a contextual spatial logic for the π-calculus, which lacks the spatial operators to observe emptyness, parallel composition and rest...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Hirschkoff, Daniel
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 339
container_issue
container_start_page 325
container_title
container_volume
creator Hirschkoff, Daniel
description Existing spatial logics for concurrency are intensional, in the sense that they induce an equivalence that coincides with structural congruence. In this work, we study a contextual spatial logic for the π-calculus, which lacks the spatial operators to observe emptyness, parallel composition and restriction, and only has composition adjunct and hiding. We show that the induced logical equivalence coincides with strong early bisimilarity. The proof of completeness involves the definition of non-trivial formulas, including characteristic formulas for restriction-free processes up to bisimilarity. This result allows us to isolate the extensional core of spatial logics, decomposing spatial logics into a part that counts (given by the intensional operators) and a part that observes (given by their adjuncts). We also study how enriching the core extensional spatial logic with intensional operators affects its separative power.
doi_str_mv 10.1007/978-3-540-28644-8_21
format Book Chapter
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_16107744</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16107744</sourcerecordid><originalsourceid>FETCH-LOGICAL-p274t-ab5c9334ac328f26443e46012bd6346b562b175a27c0712568e596c4733f32a43</originalsourceid><addsrcrecordid>eNotkMtOxDAMRcNLogz9AxbdsAwkdpo0y9FoeEhFIAHrKA3pqFCaqukC_p5MB28sXV_Z14eQK85uOGPqVquKIi0Fo1BJIWhlgB-RC0zKIshjknHJOUUU-oTkyb_MQAumTknGkAHVSuA5yWP8ZKk4VKggI3w9FNuf2Q-xC4Pti9fRzl3qddh1rmjDVDyFput98TIF52P08ZKctbaPPv_vK_J-t33bPND6-f5xs67pCErM1Dal0ymPdQhVCykleiHT3eZDopBNKaHhqrSgHFMcSln5UksnFGKLYAWuyPVh72ijs3072cF10YxT922nX5P-ZUqJvQ8OvphGw85PpgnhKxrOzB6eSTAMmoTDLKzMHh7-AbkNWiQ</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype></control><display><type>book_chapter</type><title>An Extensional Spatial Logic for Mobile Processes</title><source>Springer Books</source><creator>Hirschkoff, Daniel</creator><contributor>Gardner, Philippa ; Yoshida, Nobuko</contributor><creatorcontrib>Hirschkoff, Daniel ; Gardner, Philippa ; Yoshida, Nobuko</creatorcontrib><description>Existing spatial logics for concurrency are intensional, in the sense that they induce an equivalence that coincides with structural congruence. In this work, we study a contextual spatial logic for the π-calculus, which lacks the spatial operators to observe emptyness, parallel composition and restriction, and only has composition adjunct and hiding. We show that the induced logical equivalence coincides with strong early bisimilarity. The proof of completeness involves the definition of non-trivial formulas, including characteristic formulas for restriction-free processes up to bisimilarity. This result allows us to isolate the extensional core of spatial logics, decomposing spatial logics into a part that counts (given by the intensional operators) and a part that observes (given by their adjuncts). We also study how enriching the core extensional spatial logic with intensional operators affects its separative power.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540229407</identifier><identifier>ISBN: 354022940X</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540286446</identifier><identifier>EISBN: 9783540286448</identifier><identifier>DOI: 10.1007/978-3-540-28644-8_21</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Computer science; control theory; systems ; Exact sciences and technology ; Formula Atom ; Label Transition System ; Modal Logic ; Parallel Composition ; Public Process ; Software ; Software engineering</subject><ispartof>CONCUR 2004 - Concurrency Theory, 2004, p.325-339</ispartof><rights>Springer-Verlag Berlin Heidelberg 2004</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/978-3-540-28644-8_21$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/978-3-540-28644-8_21$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4036,4037,27902,38232,41418,42487</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16107744$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Gardner, Philippa</contributor><contributor>Yoshida, Nobuko</contributor><creatorcontrib>Hirschkoff, Daniel</creatorcontrib><title>An Extensional Spatial Logic for Mobile Processes</title><title>CONCUR 2004 - Concurrency Theory</title><description>Existing spatial logics for concurrency are intensional, in the sense that they induce an equivalence that coincides with structural congruence. In this work, we study a contextual spatial logic for the π-calculus, which lacks the spatial operators to observe emptyness, parallel composition and restriction, and only has composition adjunct and hiding. We show that the induced logical equivalence coincides with strong early bisimilarity. The proof of completeness involves the definition of non-trivial formulas, including characteristic formulas for restriction-free processes up to bisimilarity. This result allows us to isolate the extensional core of spatial logics, decomposing spatial logics into a part that counts (given by the intensional operators) and a part that observes (given by their adjuncts). We also study how enriching the core extensional spatial logic with intensional operators affects its separative power.</description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Formula Atom</subject><subject>Label Transition System</subject><subject>Modal Logic</subject><subject>Parallel Composition</subject><subject>Public Process</subject><subject>Software</subject><subject>Software engineering</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540229407</isbn><isbn>354022940X</isbn><isbn>3540286446</isbn><isbn>9783540286448</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2004</creationdate><recordtype>book_chapter</recordtype><recordid>eNotkMtOxDAMRcNLogz9AxbdsAwkdpo0y9FoeEhFIAHrKA3pqFCaqukC_p5MB28sXV_Z14eQK85uOGPqVquKIi0Fo1BJIWhlgB-RC0zKIshjknHJOUUU-oTkyb_MQAumTknGkAHVSuA5yWP8ZKk4VKggI3w9FNuf2Q-xC4Pti9fRzl3qddh1rmjDVDyFput98TIF52P08ZKctbaPPv_vK_J-t33bPND6-f5xs67pCErM1Dal0ymPdQhVCykleiHT3eZDopBNKaHhqrSgHFMcSln5UksnFGKLYAWuyPVh72ijs3072cF10YxT922nX5P-ZUqJvQ8OvphGw85PpgnhKxrOzB6eSTAMmoTDLKzMHh7-AbkNWiQ</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Hirschkoff, Daniel</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2004</creationdate><title>An Extensional Spatial Logic for Mobile Processes</title><author>Hirschkoff, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p274t-ab5c9334ac328f26443e46012bd6346b562b175a27c0712568e596c4733f32a43</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Formula Atom</topic><topic>Label Transition System</topic><topic>Modal Logic</topic><topic>Parallel Composition</topic><topic>Public Process</topic><topic>Software</topic><topic>Software engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hirschkoff, Daniel</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hirschkoff, Daniel</au><au>Gardner, Philippa</au><au>Yoshida, Nobuko</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>An Extensional Spatial Logic for Mobile Processes</atitle><btitle>CONCUR 2004 - Concurrency Theory</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2004</date><risdate>2004</risdate><spage>325</spage><epage>339</epage><pages>325-339</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540229407</isbn><isbn>354022940X</isbn><eisbn>3540286446</eisbn><eisbn>9783540286448</eisbn><abstract>Existing spatial logics for concurrency are intensional, in the sense that they induce an equivalence that coincides with structural congruence. In this work, we study a contextual spatial logic for the π-calculus, which lacks the spatial operators to observe emptyness, parallel composition and restriction, and only has composition adjunct and hiding. We show that the induced logical equivalence coincides with strong early bisimilarity. The proof of completeness involves the definition of non-trivial formulas, including characteristic formulas for restriction-free processes up to bisimilarity. This result allows us to isolate the extensional core of spatial logics, decomposing spatial logics into a part that counts (given by the intensional operators) and a part that observes (given by their adjuncts). We also study how enriching the core extensional spatial logic with intensional operators affects its separative power.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/978-3-540-28644-8_21</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof CONCUR 2004 - Concurrency Theory, 2004, p.325-339
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_16107744
source Springer Books
subjects Applied sciences
Computer science
control theory
systems
Exact sciences and technology
Formula Atom
Label Transition System
Modal Logic
Parallel Composition
Public Process
Software
Software engineering
title An Extensional Spatial Logic for Mobile Processes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T21%3A37%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=An%20Extensional%20Spatial%20Logic%20for%20Mobile%20Processes&rft.btitle=CONCUR%202004%20-%20Concurrency%20Theory&rft.au=Hirschkoff,%20Daniel&rft.date=2004&rft.spage=325&rft.epage=339&rft.pages=325-339&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540229407&rft.isbn_list=354022940X&rft_id=info:doi/10.1007/978-3-540-28644-8_21&rft_dat=%3Cpascalfrancis_sprin%3E16107744%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540286446&rft.eisbn_list=9783540286448&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true