An Extensional Spatial Logic for Mobile Processes
Existing spatial logics for concurrency are intensional, in the sense that they induce an equivalence that coincides with structural congruence. In this work, we study a contextual spatial logic for the π-calculus, which lacks the spatial operators to observe emptyness, parallel composition and rest...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 339 |
---|---|
container_issue | |
container_start_page | 325 |
container_title | |
container_volume | |
creator | Hirschkoff, Daniel |
description | Existing spatial logics for concurrency are intensional, in the sense that they induce an equivalence that coincides with structural congruence. In this work, we study a contextual spatial logic for the π-calculus, which lacks the spatial operators to observe emptyness, parallel composition and restriction, and only has composition adjunct and hiding. We show that the induced logical equivalence coincides with strong early bisimilarity. The proof of completeness involves the definition of non-trivial formulas, including characteristic formulas for restriction-free processes up to bisimilarity. This result allows us to isolate the extensional core of spatial logics, decomposing spatial logics into a part that counts (given by the intensional operators) and a part that observes (given by their adjuncts). We also study how enriching the core extensional spatial logic with intensional operators affects its separative power. |
doi_str_mv | 10.1007/978-3-540-28644-8_21 |
format | Book Chapter |
fullrecord | <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_16107744</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16107744</sourcerecordid><originalsourceid>FETCH-LOGICAL-p274t-ab5c9334ac328f26443e46012bd6346b562b175a27c0712568e596c4733f32a43</originalsourceid><addsrcrecordid>eNotkMtOxDAMRcNLogz9AxbdsAwkdpo0y9FoeEhFIAHrKA3pqFCaqukC_p5MB28sXV_Z14eQK85uOGPqVquKIi0Fo1BJIWhlgB-RC0zKIshjknHJOUUU-oTkyb_MQAumTknGkAHVSuA5yWP8ZKk4VKggI3w9FNuf2Q-xC4Pti9fRzl3qddh1rmjDVDyFput98TIF52P08ZKctbaPPv_vK_J-t33bPND6-f5xs67pCErM1Dal0ymPdQhVCykleiHT3eZDopBNKaHhqrSgHFMcSln5UksnFGKLYAWuyPVh72ijs3072cF10YxT922nX5P-ZUqJvQ8OvphGw85PpgnhKxrOzB6eSTAMmoTDLKzMHh7-AbkNWiQ</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype></control><display><type>book_chapter</type><title>An Extensional Spatial Logic for Mobile Processes</title><source>Springer Books</source><creator>Hirschkoff, Daniel</creator><contributor>Gardner, Philippa ; Yoshida, Nobuko</contributor><creatorcontrib>Hirschkoff, Daniel ; Gardner, Philippa ; Yoshida, Nobuko</creatorcontrib><description>Existing spatial logics for concurrency are intensional, in the sense that they induce an equivalence that coincides with structural congruence. In this work, we study a contextual spatial logic for the π-calculus, which lacks the spatial operators to observe emptyness, parallel composition and restriction, and only has composition adjunct and hiding. We show that the induced logical equivalence coincides with strong early bisimilarity. The proof of completeness involves the definition of non-trivial formulas, including characteristic formulas for restriction-free processes up to bisimilarity. This result allows us to isolate the extensional core of spatial logics, decomposing spatial logics into a part that counts (given by the intensional operators) and a part that observes (given by their adjuncts). We also study how enriching the core extensional spatial logic with intensional operators affects its separative power.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540229407</identifier><identifier>ISBN: 354022940X</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540286446</identifier><identifier>EISBN: 9783540286448</identifier><identifier>DOI: 10.1007/978-3-540-28644-8_21</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Computer science; control theory; systems ; Exact sciences and technology ; Formula Atom ; Label Transition System ; Modal Logic ; Parallel Composition ; Public Process ; Software ; Software engineering</subject><ispartof>CONCUR 2004 - Concurrency Theory, 2004, p.325-339</ispartof><rights>Springer-Verlag Berlin Heidelberg 2004</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/978-3-540-28644-8_21$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/978-3-540-28644-8_21$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4036,4037,27902,38232,41418,42487</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16107744$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Gardner, Philippa</contributor><contributor>Yoshida, Nobuko</contributor><creatorcontrib>Hirschkoff, Daniel</creatorcontrib><title>An Extensional Spatial Logic for Mobile Processes</title><title>CONCUR 2004 - Concurrency Theory</title><description>Existing spatial logics for concurrency are intensional, in the sense that they induce an equivalence that coincides with structural congruence. In this work, we study a contextual spatial logic for the π-calculus, which lacks the spatial operators to observe emptyness, parallel composition and restriction, and only has composition adjunct and hiding. We show that the induced logical equivalence coincides with strong early bisimilarity. The proof of completeness involves the definition of non-trivial formulas, including characteristic formulas for restriction-free processes up to bisimilarity. This result allows us to isolate the extensional core of spatial logics, decomposing spatial logics into a part that counts (given by the intensional operators) and a part that observes (given by their adjuncts). We also study how enriching the core extensional spatial logic with intensional operators affects its separative power.</description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Formula Atom</subject><subject>Label Transition System</subject><subject>Modal Logic</subject><subject>Parallel Composition</subject><subject>Public Process</subject><subject>Software</subject><subject>Software engineering</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540229407</isbn><isbn>354022940X</isbn><isbn>3540286446</isbn><isbn>9783540286448</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2004</creationdate><recordtype>book_chapter</recordtype><recordid>eNotkMtOxDAMRcNLogz9AxbdsAwkdpo0y9FoeEhFIAHrKA3pqFCaqukC_p5MB28sXV_Z14eQK85uOGPqVquKIi0Fo1BJIWhlgB-RC0zKIshjknHJOUUU-oTkyb_MQAumTknGkAHVSuA5yWP8ZKk4VKggI3w9FNuf2Q-xC4Pti9fRzl3qddh1rmjDVDyFput98TIF52P08ZKctbaPPv_vK_J-t33bPND6-f5xs67pCErM1Dal0ymPdQhVCykleiHT3eZDopBNKaHhqrSgHFMcSln5UksnFGKLYAWuyPVh72ijs3072cF10YxT922nX5P-ZUqJvQ8OvphGw85PpgnhKxrOzB6eSTAMmoTDLKzMHh7-AbkNWiQ</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Hirschkoff, Daniel</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2004</creationdate><title>An Extensional Spatial Logic for Mobile Processes</title><author>Hirschkoff, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p274t-ab5c9334ac328f26443e46012bd6346b562b175a27c0712568e596c4733f32a43</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Formula Atom</topic><topic>Label Transition System</topic><topic>Modal Logic</topic><topic>Parallel Composition</topic><topic>Public Process</topic><topic>Software</topic><topic>Software engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hirschkoff, Daniel</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hirschkoff, Daniel</au><au>Gardner, Philippa</au><au>Yoshida, Nobuko</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>An Extensional Spatial Logic for Mobile Processes</atitle><btitle>CONCUR 2004 - Concurrency Theory</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2004</date><risdate>2004</risdate><spage>325</spage><epage>339</epage><pages>325-339</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540229407</isbn><isbn>354022940X</isbn><eisbn>3540286446</eisbn><eisbn>9783540286448</eisbn><abstract>Existing spatial logics for concurrency are intensional, in the sense that they induce an equivalence that coincides with structural congruence. In this work, we study a contextual spatial logic for the π-calculus, which lacks the spatial operators to observe emptyness, parallel composition and restriction, and only has composition adjunct and hiding. We show that the induced logical equivalence coincides with strong early bisimilarity. The proof of completeness involves the definition of non-trivial formulas, including characteristic formulas for restriction-free processes up to bisimilarity. This result allows us to isolate the extensional core of spatial logics, decomposing spatial logics into a part that counts (given by the intensional operators) and a part that observes (given by their adjuncts). We also study how enriching the core extensional spatial logic with intensional operators affects its separative power.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/978-3-540-28644-8_21</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | CONCUR 2004 - Concurrency Theory, 2004, p.325-339 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_16107744 |
source | Springer Books |
subjects | Applied sciences Computer science control theory systems Exact sciences and technology Formula Atom Label Transition System Modal Logic Parallel Composition Public Process Software Software engineering |
title | An Extensional Spatial Logic for Mobile Processes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T21%3A37%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=An%20Extensional%20Spatial%20Logic%20for%20Mobile%20Processes&rft.btitle=CONCUR%202004%20-%20Concurrency%20Theory&rft.au=Hirschkoff,%20Daniel&rft.date=2004&rft.spage=325&rft.epage=339&rft.pages=325-339&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540229407&rft.isbn_list=354022940X&rft_id=info:doi/10.1007/978-3-540-28644-8_21&rft_dat=%3Cpascalfrancis_sprin%3E16107744%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540286446&rft.eisbn_list=9783540286448&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |