Finding Clusters and Components by Unsupervised Learning
We present a tutorial survey on some recent approaches to unsupervised machine learning in the context of statistical pattern recognition. In statistical PR, there are two classical categories for unsupervised learning methods and models: first, variations of Principal Component Analysis and Factor...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | 3138 |
creator | Oja, Erkki |
description | We present a tutorial survey on some recent approaches to unsupervised machine learning in the context of statistical pattern recognition. In statistical PR, there are two classical categories for unsupervised learning methods and models: first, variations of Principal Component Analysis and Factor Analysis, and second, learning vector coding or clustering methods. These are the starting-point in this article. The more recent trend in unsupervised learning is to consider this problem in the framework of probabilistic generative models. If it is possible to build and estimate a model that explains the data in terms of some latent variables, key insights may be obtained into the true nature and structure of the data. This approach is also reviewed, with examples such as linear and nonlinear independent component analysis and topological maps. |
doi_str_mv | 10.1007/978-3-540-27868-9_1 |
format | Book Chapter |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_16075436</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC3088874_10_20</sourcerecordid><originalsourceid>FETCH-LOGICAL-p315t-85dbb04935701f13a775cb1955d4e412e2bf1077ffe13257fe5bc016e61d663c3</originalsourceid><addsrcrecordid>eNotkMtOwzAQRc1TLaVfwCYbloYZv7NEFQWkSmzo2nISpwRaJ9gtUv8et3Q2o3ncq5lDyB3CAwLox1IbyqkUQJk2ytDS4hm54blxrOGcjFEhUs5FeXEaMKlBXZIxcGC01IJfk5ECI1CZckSmKX1BDiaZYmpMzLwLTRdWxWy9S1sfU-FCU8z6zdAHH7apqPbFMqTd4ONvl3xTLLyLIQtuyVXr1slPT3lClvPnj9krXby_vM2eFnTgKLfUyKaqQJQ8X4Utcqe1rCsspWyEF8g8q1oErdvWI8-nt15WNaDyChuleM0n5P7fd3Cpdus2ulB3yQ6x27i4t6hAS8FV3sP_vZRHYeWjrfr-O1kEe0BpM0rLbQZkj-hsRpk17OQd-5-dT1vrD6I6Px7duv50w4GI5WCM0eJgxYD_ATpMcJ8</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC3088874_10_20</pqid></control><display><type>book_chapter</type><title>Finding Clusters and Components by Unsupervised Learning</title><source>Springer Books</source><creator>Oja, Erkki</creator><contributor>Ridder, Dick de ; Duin, Robert P. W ; Caelli, Terry ; Campilho, Aurélio ; Fred, Ana</contributor><creatorcontrib>Oja, Erkki ; Ridder, Dick de ; Duin, Robert P. W ; Caelli, Terry ; Campilho, Aurélio ; Fred, Ana</creatorcontrib><description>We present a tutorial survey on some recent approaches to unsupervised machine learning in the context of statistical pattern recognition. In statistical PR, there are two classical categories for unsupervised learning methods and models: first, variations of Principal Component Analysis and Factor Analysis, and second, learning vector coding or clustering methods. These are the starting-point in this article. The more recent trend in unsupervised learning is to consider this problem in the framework of probabilistic generative models. If it is possible to build and estimate a model that explains the data in terms of some latent variables, key insights may be obtained into the true nature and structure of the data. This approach is also reviewed, with examples such as linear and nonlinear independent component analysis and topological maps.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540225706</identifier><identifier>ISBN: 9783540225706</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540278680</identifier><identifier>EISBN: 9783540278689</identifier><identifier>DOI: 10.1007/978-3-540-27868-9_1</identifier><identifier>OCLC: 60841689</identifier><identifier>LCCallNum: Q337.5</identifier><language>eng</language><publisher>Germany: Springer Berlin / Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Blind Source Separation ; Computer science; control theory; systems ; Exact sciences and technology ; Independent Component Analysis ; Learning and adaptive systems ; Neural Computation ; Statistical Pattern Recognition</subject><ispartof>Lecture notes in computer science, 2004, Vol.3138, p.1-15</ispartof><rights>Springer-Verlag Berlin Heidelberg 2004</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/3088874-l.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/978-3-540-27868-9_1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/978-3-540-27868-9_1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4036,4037,27902,38232,41418,42487</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16075436$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Ridder, Dick de</contributor><contributor>Duin, Robert P. W</contributor><contributor>Caelli, Terry</contributor><contributor>Campilho, Aurélio</contributor><contributor>Fred, Ana</contributor><creatorcontrib>Oja, Erkki</creatorcontrib><title>Finding Clusters and Components by Unsupervised Learning</title><title>Lecture notes in computer science</title><description>We present a tutorial survey on some recent approaches to unsupervised machine learning in the context of statistical pattern recognition. In statistical PR, there are two classical categories for unsupervised learning methods and models: first, variations of Principal Component Analysis and Factor Analysis, and second, learning vector coding or clustering methods. These are the starting-point in this article. The more recent trend in unsupervised learning is to consider this problem in the framework of probabilistic generative models. If it is possible to build and estimate a model that explains the data in terms of some latent variables, key insights may be obtained into the true nature and structure of the data. This approach is also reviewed, with examples such as linear and nonlinear independent component analysis and topological maps.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Blind Source Separation</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Independent Component Analysis</subject><subject>Learning and adaptive systems</subject><subject>Neural Computation</subject><subject>Statistical Pattern Recognition</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540225706</isbn><isbn>9783540225706</isbn><isbn>3540278680</isbn><isbn>9783540278689</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2004</creationdate><recordtype>book_chapter</recordtype><recordid>eNotkMtOwzAQRc1TLaVfwCYbloYZv7NEFQWkSmzo2nISpwRaJ9gtUv8et3Q2o3ncq5lDyB3CAwLox1IbyqkUQJk2ytDS4hm54blxrOGcjFEhUs5FeXEaMKlBXZIxcGC01IJfk5ECI1CZckSmKX1BDiaZYmpMzLwLTRdWxWy9S1sfU-FCU8z6zdAHH7apqPbFMqTd4ONvl3xTLLyLIQtuyVXr1slPT3lClvPnj9krXby_vM2eFnTgKLfUyKaqQJQ8X4Utcqe1rCsspWyEF8g8q1oErdvWI8-nt15WNaDyChuleM0n5P7fd3Cpdus2ulB3yQ6x27i4t6hAS8FV3sP_vZRHYeWjrfr-O1kEe0BpM0rLbQZkj-hsRpk17OQd-5-dT1vrD6I6Px7duv50w4GI5WCM0eJgxYD_ATpMcJ8</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Oja, Erkki</creator><general>Springer Berlin / Heidelberg</general><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>FFUUA</scope><scope>IQODW</scope></search><sort><creationdate>2004</creationdate><title>Finding Clusters and Components by Unsupervised Learning</title><author>Oja, Erkki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p315t-85dbb04935701f13a775cb1955d4e412e2bf1077ffe13257fe5bc016e61d663c3</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Blind Source Separation</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Independent Component Analysis</topic><topic>Learning and adaptive systems</topic><topic>Neural Computation</topic><topic>Statistical Pattern Recognition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oja, Erkki</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oja, Erkki</au><au>Ridder, Dick de</au><au>Duin, Robert P. W</au><au>Caelli, Terry</au><au>Campilho, Aurélio</au><au>Fred, Ana</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Finding Clusters and Components by Unsupervised Learning</atitle><btitle>Lecture notes in computer science</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2004</date><risdate>2004</risdate><volume>3138</volume><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540225706</isbn><isbn>9783540225706</isbn><eisbn>3540278680</eisbn><eisbn>9783540278689</eisbn><abstract>We present a tutorial survey on some recent approaches to unsupervised machine learning in the context of statistical pattern recognition. In statistical PR, there are two classical categories for unsupervised learning methods and models: first, variations of Principal Component Analysis and Factor Analysis, and second, learning vector coding or clustering methods. These are the starting-point in this article. The more recent trend in unsupervised learning is to consider this problem in the framework of probabilistic generative models. If it is possible to build and estimate a model that explains the data in terms of some latent variables, key insights may be obtained into the true nature and structure of the data. This approach is also reviewed, with examples such as linear and nonlinear independent component analysis and topological maps.</abstract><cop>Germany</cop><pub>Springer Berlin / Heidelberg</pub><doi>10.1007/978-3-540-27868-9_1</doi><oclcid>60841689</oclcid><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Lecture notes in computer science, 2004, Vol.3138, p.1-15 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_16075436 |
source | Springer Books |
subjects | Applied sciences Artificial intelligence Blind Source Separation Computer science control theory systems Exact sciences and technology Independent Component Analysis Learning and adaptive systems Neural Computation Statistical Pattern Recognition |
title | Finding Clusters and Components by Unsupervised Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T03%3A15%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Finding%20Clusters%20and%20Components%20by%20Unsupervised%20Learning&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=Oja,%20Erkki&rft.date=2004&rft.volume=3138&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540225706&rft.isbn_list=9783540225706&rft_id=info:doi/10.1007/978-3-540-27868-9_1&rft_dat=%3Cproquest_pasca%3EEBC3088874_10_20%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540278680&rft.eisbn_list=9783540278689&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC3088874_10_20&rft_id=info:pmid/&rfr_iscdi=true |