role of triploid hybrids in the evolutionary dynamics of mixed-ploidy populations

Theory suggests that the evolution of autotetraploids within diploid populations will be opposed by a minority‐cytotype mating disadvantage. The role of triploids in promoting autotetraploid establishment is rarely considered, yet triploids are often found in natural populations and are formed in ex...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biological Journal of the Linnean Society 2004-08, Vol.82 (4), p.537-546
1. Verfasser: Husband, B.C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 546
container_issue 4
container_start_page 537
container_title Biological Journal of the Linnean Society
container_volume 82
creator Husband, B.C
description Theory suggests that the evolution of autotetraploids within diploid populations will be opposed by a minority‐cytotype mating disadvantage. The role of triploids in promoting autotetraploid establishment is rarely considered, yet triploids are often found in natural populations and are formed in experimental crosses. Here, I evaluate the effects of triploids on autotetraploid evolution using computer simulations and by synthesizing research on the evolutionary dynamics of mixed‐ploidy populations in Chamerion angustifolium (Onagraceae). Simulations show that the fate of a tetraploid in a diploid population varies qualitatively depending on the relative fitness of triploids, the ploidy of their gametes and the fitness of diploids relative to tetraploids. In general, even partially fit triploids can increase the likelihood of diploid–tetraploid coexistence and, in some cases, facilitate tetraploid fixation. Within the diploid–tetraploid contact zone of C. angustifolium, mixed populations are common (43%), and often (39%) contain triploids. Greenhouse and field studies indicate that triploid fitness is low (9% of diploids) but variable. Furthermore, euploid gametes produced by triploids can be x, 2x or 3x and contribute the majority (62%) of new polyploids formed in each generation (2.3 × 10−3). Although triploid bridge, alone, may not account for the evolution of autotetraploidy in C. angustifolium, it probably contributes to the prevalence of mixed‐ploidy populations in this species. Therefore, in contrast to hybrids in homoploid species, triploids may actually facilitate rather than diminish the fixation of tetraploids by enhancing the rate of formation. © 2004 The Linnean Society of London, Biological Journal of the Linnean Society, 2004, 82, 537–546.
doi_str_mv 10.1111/j.1095-8312.2004.00339.x
format Article
fullrecord <record><control><sourceid>istex_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_16037645</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_R19CLZMD_P</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4699-6804bea0def821b92bc81296a994064d60d53bbc073e3ddf424505698c5668383</originalsourceid><addsrcrecordid>eNpFkMtOwzAQRS0EEqXwDXjDMmH8iBNLbKBAKSpvKiQ2lhM74JI2UdxC8_ckLSrejKU5Z3R1EcIEQtK-02lIQEZBwggNKQAPARiT4WoH9baLXdQDoDzgIMQ-OvB-CkAIj2kPPdVlYXGZ40XtqqJ0Bn82ae2Mx26OF58W2--yWC5cOdd1g00z1zOX-U6YuZU1wdppcFVWy0J3mD9Ee7kuvD36m300ub56HdwE44fhaHA-DjIupAxEAjy1GozNE0pSSdMsIVQKLWUbkxsBJmJpmkHMLDMm55RHEAmZZJEQCUtYH51s7lbaZ7rIaz3PnFdV7WZtVEUEsFjwqOXONtyPK2zzvwfV9aemqqtJdTWprj-17k-t1MXotv20erDRnV_Y1VbX9ZcSMYsj9XY_VM9EDsbvd5fqseWPN3yuS6U_6jbS5IUCYUAAYsIl-wXfI34y</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>role of triploid hybrids in the evolutionary dynamics of mixed-ploidy populations</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Husband, B.C</creator><creatorcontrib>Husband, B.C</creatorcontrib><description>Theory suggests that the evolution of autotetraploids within diploid populations will be opposed by a minority‐cytotype mating disadvantage. The role of triploids in promoting autotetraploid establishment is rarely considered, yet triploids are often found in natural populations and are formed in experimental crosses. Here, I evaluate the effects of triploids on autotetraploid evolution using computer simulations and by synthesizing research on the evolutionary dynamics of mixed‐ploidy populations in Chamerion angustifolium (Onagraceae). Simulations show that the fate of a tetraploid in a diploid population varies qualitatively depending on the relative fitness of triploids, the ploidy of their gametes and the fitness of diploids relative to tetraploids. In general, even partially fit triploids can increase the likelihood of diploid–tetraploid coexistence and, in some cases, facilitate tetraploid fixation. Within the diploid–tetraploid contact zone of C. angustifolium, mixed populations are common (43%), and often (39%) contain triploids. Greenhouse and field studies indicate that triploid fitness is low (9% of diploids) but variable. Furthermore, euploid gametes produced by triploids can be x, 2x or 3x and contribute the majority (62%) of new polyploids formed in each generation (2.3 × 10−3). Although triploid bridge, alone, may not account for the evolution of autotetraploidy in C. angustifolium, it probably contributes to the prevalence of mixed‐ploidy populations in this species. Therefore, in contrast to hybrids in homoploid species, triploids may actually facilitate rather than diminish the fixation of tetraploids by enhancing the rate of formation. © 2004 The Linnean Society of London, Biological Journal of the Linnean Society, 2004, 82, 537–546.</description><identifier>ISSN: 0024-4066</identifier><identifier>EISSN: 1095-8312</identifier><identifier>DOI: 10.1111/j.1095-8312.2004.00339.x</identifier><identifier>CODEN: BJLSBG</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Science Ltd</publisher><subject>Biological and medical sciences ; Biological evolution ; computer simulation ; establishment ; fitness ; flow cytometry ; formation ; Fundamental and applied biological sciences. Psychology ; Genetics of eukaryotes. Biological and molecular evolution ; genome multiplication ; polyploid ; population biology ; triploid bridge ; unreduced gametes</subject><ispartof>Biological Journal of the Linnean Society, 2004-08, Vol.82 (4), p.537-546</ispartof><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4699-6804bea0def821b92bc81296a994064d60d53bbc073e3ddf424505698c5668383</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1095-8312.2004.00339.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1095-8312.2004.00339.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,1411,23911,23912,25120,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16037645$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Husband, B.C</creatorcontrib><title>role of triploid hybrids in the evolutionary dynamics of mixed-ploidy populations</title><title>Biological Journal of the Linnean Society</title><description>Theory suggests that the evolution of autotetraploids within diploid populations will be opposed by a minority‐cytotype mating disadvantage. The role of triploids in promoting autotetraploid establishment is rarely considered, yet triploids are often found in natural populations and are formed in experimental crosses. Here, I evaluate the effects of triploids on autotetraploid evolution using computer simulations and by synthesizing research on the evolutionary dynamics of mixed‐ploidy populations in Chamerion angustifolium (Onagraceae). Simulations show that the fate of a tetraploid in a diploid population varies qualitatively depending on the relative fitness of triploids, the ploidy of their gametes and the fitness of diploids relative to tetraploids. In general, even partially fit triploids can increase the likelihood of diploid–tetraploid coexistence and, in some cases, facilitate tetraploid fixation. Within the diploid–tetraploid contact zone of C. angustifolium, mixed populations are common (43%), and often (39%) contain triploids. Greenhouse and field studies indicate that triploid fitness is low (9% of diploids) but variable. Furthermore, euploid gametes produced by triploids can be x, 2x or 3x and contribute the majority (62%) of new polyploids formed in each generation (2.3 × 10−3). Although triploid bridge, alone, may not account for the evolution of autotetraploidy in C. angustifolium, it probably contributes to the prevalence of mixed‐ploidy populations in this species. Therefore, in contrast to hybrids in homoploid species, triploids may actually facilitate rather than diminish the fixation of tetraploids by enhancing the rate of formation. © 2004 The Linnean Society of London, Biological Journal of the Linnean Society, 2004, 82, 537–546.</description><subject>Biological and medical sciences</subject><subject>Biological evolution</subject><subject>computer simulation</subject><subject>establishment</subject><subject>fitness</subject><subject>flow cytometry</subject><subject>formation</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genetics of eukaryotes. Biological and molecular evolution</subject><subject>genome multiplication</subject><subject>polyploid</subject><subject>population biology</subject><subject>triploid bridge</subject><subject>unreduced gametes</subject><issn>0024-4066</issn><issn>1095-8312</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNpFkMtOwzAQRS0EEqXwDXjDMmH8iBNLbKBAKSpvKiQ2lhM74JI2UdxC8_ckLSrejKU5Z3R1EcIEQtK-02lIQEZBwggNKQAPARiT4WoH9baLXdQDoDzgIMQ-OvB-CkAIj2kPPdVlYXGZ40XtqqJ0Bn82ae2Mx26OF58W2--yWC5cOdd1g00z1zOX-U6YuZU1wdppcFVWy0J3mD9Ee7kuvD36m300ub56HdwE44fhaHA-DjIupAxEAjy1GozNE0pSSdMsIVQKLWUbkxsBJmJpmkHMLDMm55RHEAmZZJEQCUtYH51s7lbaZ7rIaz3PnFdV7WZtVEUEsFjwqOXONtyPK2zzvwfV9aemqqtJdTWprj-17k-t1MXotv20erDRnV_Y1VbX9ZcSMYsj9XY_VM9EDsbvd5fqseWPN3yuS6U_6jbS5IUCYUAAYsIl-wXfI34y</recordid><startdate>200408</startdate><enddate>200408</enddate><creator>Husband, B.C</creator><general>Blackwell Science Ltd</general><general>Blackwell</general><scope>FBQ</scope><scope>BSCLL</scope><scope>IQODW</scope></search><sort><creationdate>200408</creationdate><title>role of triploid hybrids in the evolutionary dynamics of mixed-ploidy populations</title><author>Husband, B.C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4699-6804bea0def821b92bc81296a994064d60d53bbc073e3ddf424505698c5668383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Biological and medical sciences</topic><topic>Biological evolution</topic><topic>computer simulation</topic><topic>establishment</topic><topic>fitness</topic><topic>flow cytometry</topic><topic>formation</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genetics of eukaryotes. Biological and molecular evolution</topic><topic>genome multiplication</topic><topic>polyploid</topic><topic>population biology</topic><topic>triploid bridge</topic><topic>unreduced gametes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Husband, B.C</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Pascal-Francis</collection><jtitle>Biological Journal of the Linnean Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Husband, B.C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>role of triploid hybrids in the evolutionary dynamics of mixed-ploidy populations</atitle><jtitle>Biological Journal of the Linnean Society</jtitle><date>2004-08</date><risdate>2004</risdate><volume>82</volume><issue>4</issue><spage>537</spage><epage>546</epage><pages>537-546</pages><issn>0024-4066</issn><eissn>1095-8312</eissn><coden>BJLSBG</coden><abstract>Theory suggests that the evolution of autotetraploids within diploid populations will be opposed by a minority‐cytotype mating disadvantage. The role of triploids in promoting autotetraploid establishment is rarely considered, yet triploids are often found in natural populations and are formed in experimental crosses. Here, I evaluate the effects of triploids on autotetraploid evolution using computer simulations and by synthesizing research on the evolutionary dynamics of mixed‐ploidy populations in Chamerion angustifolium (Onagraceae). Simulations show that the fate of a tetraploid in a diploid population varies qualitatively depending on the relative fitness of triploids, the ploidy of their gametes and the fitness of diploids relative to tetraploids. In general, even partially fit triploids can increase the likelihood of diploid–tetraploid coexistence and, in some cases, facilitate tetraploid fixation. Within the diploid–tetraploid contact zone of C. angustifolium, mixed populations are common (43%), and often (39%) contain triploids. Greenhouse and field studies indicate that triploid fitness is low (9% of diploids) but variable. Furthermore, euploid gametes produced by triploids can be x, 2x or 3x and contribute the majority (62%) of new polyploids formed in each generation (2.3 × 10−3). Although triploid bridge, alone, may not account for the evolution of autotetraploidy in C. angustifolium, it probably contributes to the prevalence of mixed‐ploidy populations in this species. Therefore, in contrast to hybrids in homoploid species, triploids may actually facilitate rather than diminish the fixation of tetraploids by enhancing the rate of formation. © 2004 The Linnean Society of London, Biological Journal of the Linnean Society, 2004, 82, 537–546.</abstract><cop>Oxford, UK</cop><pub>Blackwell Science Ltd</pub><doi>10.1111/j.1095-8312.2004.00339.x</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0024-4066
ispartof Biological Journal of the Linnean Society, 2004-08, Vol.82 (4), p.537-546
issn 0024-4066
1095-8312
language eng
recordid cdi_pascalfrancis_primary_16037645
source Oxford University Press Journals All Titles (1996-Current); Wiley Online Library Journals Frontfile Complete
subjects Biological and medical sciences
Biological evolution
computer simulation
establishment
fitness
flow cytometry
formation
Fundamental and applied biological sciences. Psychology
Genetics of eukaryotes. Biological and molecular evolution
genome multiplication
polyploid
population biology
triploid bridge
unreduced gametes
title role of triploid hybrids in the evolutionary dynamics of mixed-ploidy populations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T02%3A16%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=role%20of%20triploid%20hybrids%20in%20the%20evolutionary%20dynamics%20of%20mixed-ploidy%20populations&rft.jtitle=Biological%20Journal%20of%20the%20Linnean%20Society&rft.au=Husband,%20B.C&rft.date=2004-08&rft.volume=82&rft.issue=4&rft.spage=537&rft.epage=546&rft.pages=537-546&rft.issn=0024-4066&rft.eissn=1095-8312&rft.coden=BJLSBG&rft_id=info:doi/10.1111/j.1095-8312.2004.00339.x&rft_dat=%3Cistex_pasca%3Eark_67375_WNG_R19CLZMD_P%3C/istex_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true