“Wave-Style” Geometry of Interaction Models in Rel Are Graph-Like Lambda-Models

We study the connections between graph models and “wave-style” Geometry of Interaction (GoI) λ-models. The latters arise when Abramsky’s GoI axiomatization, which generalizes Girard’s original GoI, is applied to a traced monoidal category with the categorical product as tensor, using a countable pow...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Honsell, Furio, Lenisa, Marina
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 258
container_issue
container_start_page 242
container_title
container_volume 3085
creator Honsell, Furio
Lenisa, Marina
description We study the connections between graph models and “wave-style” Geometry of Interaction (GoI) λ-models. The latters arise when Abramsky’s GoI axiomatization, which generalizes Girard’s original GoI, is applied to a traced monoidal category with the categorical product as tensor, using a countable power as the traced strong monoidal functor !. Abramsky hinted that the category Rel of sets and relations is the basic setting for traditional denotational “static semantics”. However, the category Rel together with the cartesian product apparently escapes original Abramsky’s axiomatization. Here we show that, by moving to the category Rel* of pointed sets and relations preserving the distinguished point, and by sligthly relaxing Abramsky’s GoI axiomatization, we can recover a large class of graph-like models as wave models. Furthermore, we show that the class of untyped λ-theories induced by wave-style GoI models is richer than that induced by game models.
doi_str_mv 10.1007/978-3-540-24849-1_16
format Book Chapter
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_15994031</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC3087980_22_250</sourcerecordid><originalsourceid>FETCH-LOGICAL-p272t-7a42e4bd02fc34fbfd1b8b806f3838383c077fb75ac224957251e45fde058bd73</originalsourceid><addsrcrecordid>eNotkEtOwzAQhs1TFOgNWHjD0uBXYnuJEJRKRUgUxNJykjEE0iTYAak7DgKX4yS4LTOLkf75ZhYfQieMnjFK1blRmgiSSUq41NIQZlm-hQ5FStaB3kYjljNGhJBmB40Tv95xlku1i0ZUUE6MkmIfjUxCNBWGHaBxjK80leBK5myE5r9f30_uE8h8WDbw-_WDJ9AtYAhL3Hk8bQcIrhzqrsW3XQVNxHWL76HBFwHwJLj-hczqN8AztygqRzbMMdrzrokw_p9H6PH66uHyhszuJtPLixnpueIDUU5ykEVFuS-F9IWvWKELTXMv9LpLqpQvVOZKzqXJFM8YyMxXQDNdVEocodPN397F0jU-uLaso-1DvXBhaVlmjKSCJY5vuJhW7TMEW3TdW7SM2pVqm9RZYZM8uzZrV6rTkfh_Hrr3D4iDhdVVCe0QXFO-uD6piVZQrZJby7nlGRV_gOp80Q</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC3087980_22_250</pqid></control><display><type>book_chapter</type><title>“Wave-Style” Geometry of Interaction Models in Rel Are Graph-Like Lambda-Models</title><source>Springer Books</source><creator>Honsell, Furio ; Lenisa, Marina</creator><contributor>Coppo, Mario ; Damiani, Ferruccio ; Berardi, Stefano ; Berardi, Stefano ; Coppo, Mario ; Damiani, Ferruccio</contributor><creatorcontrib>Honsell, Furio ; Lenisa, Marina ; Coppo, Mario ; Damiani, Ferruccio ; Berardi, Stefano ; Berardi, Stefano ; Coppo, Mario ; Damiani, Ferruccio</creatorcontrib><description>We study the connections between graph models and “wave-style” Geometry of Interaction (GoI) λ-models. The latters arise when Abramsky’s GoI axiomatization, which generalizes Girard’s original GoI, is applied to a traced monoidal category with the categorical product as tensor, using a countable power as the traced strong monoidal functor !. Abramsky hinted that the category Rel of sets and relations is the basic setting for traditional denotational “static semantics”. However, the category Rel together with the cartesian product apparently escapes original Abramsky’s axiomatization. Here we show that, by moving to the category Rel* of pointed sets and relations preserving the distinguished point, and by sligthly relaxing Abramsky’s GoI axiomatization, we can recover a large class of graph-like models as wave models. Furthermore, we show that the class of untyped λ-theories induced by wave-style GoI models is richer than that induced by game models.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540221647</identifier><identifier>ISBN: 3540221646</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540248498</identifier><identifier>EISBN: 9783540248491</identifier><identifier>DOI: 10.1007/978-3-540-24849-1_16</identifier><identifier>OCLC: 934980391</identifier><identifier>LCCallNum: QA76.76.C65</identifier><language>eng</language><publisher>Germany: Springer Berlin / Heidelberg</publisher><subject>(linear) graph model ; Applied sciences ; categorical geometry of interaction ; Computer science; control theory; systems ; Exact sciences and technology ; Logical, boolean and switching functions ; Theoretical computing ; traced monoidal category ; weak linear category</subject><ispartof>Lecture notes in computer science, 2004, Vol.3085, p.242-258</ispartof><rights>Springer-Verlag Berlin Heidelberg 2004</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/3087980-l.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/978-3-540-24849-1_16$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/978-3-540-24849-1_16$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4050,4051,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15994031$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Coppo, Mario</contributor><contributor>Damiani, Ferruccio</contributor><contributor>Berardi, Stefano</contributor><contributor>Berardi, Stefano</contributor><contributor>Coppo, Mario</contributor><contributor>Damiani, Ferruccio</contributor><creatorcontrib>Honsell, Furio</creatorcontrib><creatorcontrib>Lenisa, Marina</creatorcontrib><title>“Wave-Style” Geometry of Interaction Models in Rel Are Graph-Like Lambda-Models</title><title>Lecture notes in computer science</title><description>We study the connections between graph models and “wave-style” Geometry of Interaction (GoI) λ-models. The latters arise when Abramsky’s GoI axiomatization, which generalizes Girard’s original GoI, is applied to a traced monoidal category with the categorical product as tensor, using a countable power as the traced strong monoidal functor !. Abramsky hinted that the category Rel of sets and relations is the basic setting for traditional denotational “static semantics”. However, the category Rel together with the cartesian product apparently escapes original Abramsky’s axiomatization. Here we show that, by moving to the category Rel* of pointed sets and relations preserving the distinguished point, and by sligthly relaxing Abramsky’s GoI axiomatization, we can recover a large class of graph-like models as wave models. Furthermore, we show that the class of untyped λ-theories induced by wave-style GoI models is richer than that induced by game models.</description><subject>(linear) graph model</subject><subject>Applied sciences</subject><subject>categorical geometry of interaction</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Logical, boolean and switching functions</subject><subject>Theoretical computing</subject><subject>traced monoidal category</subject><subject>weak linear category</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540221647</isbn><isbn>3540221646</isbn><isbn>3540248498</isbn><isbn>9783540248491</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2004</creationdate><recordtype>book_chapter</recordtype><recordid>eNotkEtOwzAQhs1TFOgNWHjD0uBXYnuJEJRKRUgUxNJykjEE0iTYAak7DgKX4yS4LTOLkf75ZhYfQieMnjFK1blRmgiSSUq41NIQZlm-hQ5FStaB3kYjljNGhJBmB40Tv95xlku1i0ZUUE6MkmIfjUxCNBWGHaBxjK80leBK5myE5r9f30_uE8h8WDbw-_WDJ9AtYAhL3Hk8bQcIrhzqrsW3XQVNxHWL76HBFwHwJLj-hczqN8AztygqRzbMMdrzrokw_p9H6PH66uHyhszuJtPLixnpueIDUU5ykEVFuS-F9IWvWKELTXMv9LpLqpQvVOZKzqXJFM8YyMxXQDNdVEocodPN397F0jU-uLaso-1DvXBhaVlmjKSCJY5vuJhW7TMEW3TdW7SM2pVqm9RZYZM8uzZrV6rTkfh_Hrr3D4iDhdVVCe0QXFO-uD6piVZQrZJby7nlGRV_gOp80Q</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Honsell, Furio</creator><creator>Lenisa, Marina</creator><general>Springer Berlin / Heidelberg</general><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>FFUUA</scope><scope>IQODW</scope></search><sort><creationdate>2004</creationdate><title>“Wave-Style” Geometry of Interaction Models in Rel Are Graph-Like Lambda-Models</title><author>Honsell, Furio ; Lenisa, Marina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p272t-7a42e4bd02fc34fbfd1b8b806f3838383c077fb75ac224957251e45fde058bd73</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2004</creationdate><topic>(linear) graph model</topic><topic>Applied sciences</topic><topic>categorical geometry of interaction</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Logical, boolean and switching functions</topic><topic>Theoretical computing</topic><topic>traced monoidal category</topic><topic>weak linear category</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Honsell, Furio</creatorcontrib><creatorcontrib>Lenisa, Marina</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Honsell, Furio</au><au>Lenisa, Marina</au><au>Coppo, Mario</au><au>Damiani, Ferruccio</au><au>Berardi, Stefano</au><au>Berardi, Stefano</au><au>Coppo, Mario</au><au>Damiani, Ferruccio</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>“Wave-Style” Geometry of Interaction Models in Rel Are Graph-Like Lambda-Models</atitle><btitle>Lecture notes in computer science</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2004</date><risdate>2004</risdate><volume>3085</volume><spage>242</spage><epage>258</epage><pages>242-258</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540221647</isbn><isbn>3540221646</isbn><eisbn>3540248498</eisbn><eisbn>9783540248491</eisbn><abstract>We study the connections between graph models and “wave-style” Geometry of Interaction (GoI) λ-models. The latters arise when Abramsky’s GoI axiomatization, which generalizes Girard’s original GoI, is applied to a traced monoidal category with the categorical product as tensor, using a countable power as the traced strong monoidal functor !. Abramsky hinted that the category Rel of sets and relations is the basic setting for traditional denotational “static semantics”. However, the category Rel together with the cartesian product apparently escapes original Abramsky’s axiomatization. Here we show that, by moving to the category Rel* of pointed sets and relations preserving the distinguished point, and by sligthly relaxing Abramsky’s GoI axiomatization, we can recover a large class of graph-like models as wave models. Furthermore, we show that the class of untyped λ-theories induced by wave-style GoI models is richer than that induced by game models.</abstract><cop>Germany</cop><pub>Springer Berlin / Heidelberg</pub><doi>10.1007/978-3-540-24849-1_16</doi><oclcid>934980391</oclcid><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Lecture notes in computer science, 2004, Vol.3085, p.242-258
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_15994031
source Springer Books
subjects (linear) graph model
Applied sciences
categorical geometry of interaction
Computer science
control theory
systems
Exact sciences and technology
Logical, boolean and switching functions
Theoretical computing
traced monoidal category
weak linear category
title “Wave-Style” Geometry of Interaction Models in Rel Are Graph-Like Lambda-Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T16%3A35%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=%E2%80%9CWave-Style%E2%80%9D%20Geometry%20of%20Interaction%20Models%20in%20Rel%20Are%20Graph-Like%20Lambda-Models&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=Honsell,%20Furio&rft.date=2004&rft.volume=3085&rft.spage=242&rft.epage=258&rft.pages=242-258&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540221647&rft.isbn_list=3540221646&rft_id=info:doi/10.1007/978-3-540-24849-1_16&rft_dat=%3Cproquest_pasca%3EEBC3087980_22_250%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540248498&rft.eisbn_list=9783540248491&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC3087980_22_250&rft_id=info:pmid/&rfr_iscdi=true