“Wave-Style” Geometry of Interaction Models in Rel Are Graph-Like Lambda-Models
We study the connections between graph models and “wave-style” Geometry of Interaction (GoI) λ-models. The latters arise when Abramsky’s GoI axiomatization, which generalizes Girard’s original GoI, is applied to a traced monoidal category with the categorical product as tensor, using a countable pow...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 258 |
---|---|
container_issue | |
container_start_page | 242 |
container_title | |
container_volume | 3085 |
creator | Honsell, Furio Lenisa, Marina |
description | We study the connections between graph models and “wave-style” Geometry of Interaction (GoI) λ-models. The latters arise when Abramsky’s GoI axiomatization, which generalizes Girard’s original GoI, is applied to a traced monoidal category with the categorical product as tensor, using a countable power as the traced strong monoidal functor !. Abramsky hinted that the category Rel of sets and relations is the basic setting for traditional denotational “static semantics”. However, the category Rel together with the cartesian product apparently escapes original Abramsky’s axiomatization. Here we show that, by moving to the category Rel* of pointed sets and relations preserving the distinguished point, and by sligthly relaxing Abramsky’s GoI axiomatization, we can recover a large class of graph-like models as wave models. Furthermore, we show that the class of untyped λ-theories induced by wave-style GoI models is richer than that induced by game models. |
doi_str_mv | 10.1007/978-3-540-24849-1_16 |
format | Book Chapter |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_15994031</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC3087980_22_250</sourcerecordid><originalsourceid>FETCH-LOGICAL-p272t-7a42e4bd02fc34fbfd1b8b806f3838383c077fb75ac224957251e45fde058bd73</originalsourceid><addsrcrecordid>eNotkEtOwzAQhs1TFOgNWHjD0uBXYnuJEJRKRUgUxNJykjEE0iTYAak7DgKX4yS4LTOLkf75ZhYfQieMnjFK1blRmgiSSUq41NIQZlm-hQ5FStaB3kYjljNGhJBmB40Tv95xlku1i0ZUUE6MkmIfjUxCNBWGHaBxjK80leBK5myE5r9f30_uE8h8WDbw-_WDJ9AtYAhL3Hk8bQcIrhzqrsW3XQVNxHWL76HBFwHwJLj-hczqN8AztygqRzbMMdrzrokw_p9H6PH66uHyhszuJtPLixnpueIDUU5ykEVFuS-F9IWvWKELTXMv9LpLqpQvVOZKzqXJFM8YyMxXQDNdVEocodPN397F0jU-uLaso-1DvXBhaVlmjKSCJY5vuJhW7TMEW3TdW7SM2pVqm9RZYZM8uzZrV6rTkfh_Hrr3D4iDhdVVCe0QXFO-uD6piVZQrZJby7nlGRV_gOp80Q</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC3087980_22_250</pqid></control><display><type>book_chapter</type><title>“Wave-Style” Geometry of Interaction Models in Rel Are Graph-Like Lambda-Models</title><source>Springer Books</source><creator>Honsell, Furio ; Lenisa, Marina</creator><contributor>Coppo, Mario ; Damiani, Ferruccio ; Berardi, Stefano ; Berardi, Stefano ; Coppo, Mario ; Damiani, Ferruccio</contributor><creatorcontrib>Honsell, Furio ; Lenisa, Marina ; Coppo, Mario ; Damiani, Ferruccio ; Berardi, Stefano ; Berardi, Stefano ; Coppo, Mario ; Damiani, Ferruccio</creatorcontrib><description>We study the connections between graph models and “wave-style” Geometry of Interaction (GoI) λ-models. The latters arise when Abramsky’s GoI axiomatization, which generalizes Girard’s original GoI, is applied to a traced monoidal category with the categorical product as tensor, using a countable power as the traced strong monoidal functor !. Abramsky hinted that the category Rel of sets and relations is the basic setting for traditional denotational “static semantics”. However, the category Rel together with the cartesian product apparently escapes original Abramsky’s axiomatization. Here we show that, by moving to the category Rel* of pointed sets and relations preserving the distinguished point, and by sligthly relaxing Abramsky’s GoI axiomatization, we can recover a large class of graph-like models as wave models. Furthermore, we show that the class of untyped λ-theories induced by wave-style GoI models is richer than that induced by game models.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540221647</identifier><identifier>ISBN: 3540221646</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540248498</identifier><identifier>EISBN: 9783540248491</identifier><identifier>DOI: 10.1007/978-3-540-24849-1_16</identifier><identifier>OCLC: 934980391</identifier><identifier>LCCallNum: QA76.76.C65</identifier><language>eng</language><publisher>Germany: Springer Berlin / Heidelberg</publisher><subject>(linear) graph model ; Applied sciences ; categorical geometry of interaction ; Computer science; control theory; systems ; Exact sciences and technology ; Logical, boolean and switching functions ; Theoretical computing ; traced monoidal category ; weak linear category</subject><ispartof>Lecture notes in computer science, 2004, Vol.3085, p.242-258</ispartof><rights>Springer-Verlag Berlin Heidelberg 2004</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/3087980-l.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/978-3-540-24849-1_16$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/978-3-540-24849-1_16$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4050,4051,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15994031$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Coppo, Mario</contributor><contributor>Damiani, Ferruccio</contributor><contributor>Berardi, Stefano</contributor><contributor>Berardi, Stefano</contributor><contributor>Coppo, Mario</contributor><contributor>Damiani, Ferruccio</contributor><creatorcontrib>Honsell, Furio</creatorcontrib><creatorcontrib>Lenisa, Marina</creatorcontrib><title>“Wave-Style” Geometry of Interaction Models in Rel Are Graph-Like Lambda-Models</title><title>Lecture notes in computer science</title><description>We study the connections between graph models and “wave-style” Geometry of Interaction (GoI) λ-models. The latters arise when Abramsky’s GoI axiomatization, which generalizes Girard’s original GoI, is applied to a traced monoidal category with the categorical product as tensor, using a countable power as the traced strong monoidal functor !. Abramsky hinted that the category Rel of sets and relations is the basic setting for traditional denotational “static semantics”. However, the category Rel together with the cartesian product apparently escapes original Abramsky’s axiomatization. Here we show that, by moving to the category Rel* of pointed sets and relations preserving the distinguished point, and by sligthly relaxing Abramsky’s GoI axiomatization, we can recover a large class of graph-like models as wave models. Furthermore, we show that the class of untyped λ-theories induced by wave-style GoI models is richer than that induced by game models.</description><subject>(linear) graph model</subject><subject>Applied sciences</subject><subject>categorical geometry of interaction</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Logical, boolean and switching functions</subject><subject>Theoretical computing</subject><subject>traced monoidal category</subject><subject>weak linear category</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540221647</isbn><isbn>3540221646</isbn><isbn>3540248498</isbn><isbn>9783540248491</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2004</creationdate><recordtype>book_chapter</recordtype><recordid>eNotkEtOwzAQhs1TFOgNWHjD0uBXYnuJEJRKRUgUxNJykjEE0iTYAak7DgKX4yS4LTOLkf75ZhYfQieMnjFK1blRmgiSSUq41NIQZlm-hQ5FStaB3kYjljNGhJBmB40Tv95xlku1i0ZUUE6MkmIfjUxCNBWGHaBxjK80leBK5myE5r9f30_uE8h8WDbw-_WDJ9AtYAhL3Hk8bQcIrhzqrsW3XQVNxHWL76HBFwHwJLj-hczqN8AztygqRzbMMdrzrokw_p9H6PH66uHyhszuJtPLixnpueIDUU5ykEVFuS-F9IWvWKELTXMv9LpLqpQvVOZKzqXJFM8YyMxXQDNdVEocodPN397F0jU-uLaso-1DvXBhaVlmjKSCJY5vuJhW7TMEW3TdW7SM2pVqm9RZYZM8uzZrV6rTkfh_Hrr3D4iDhdVVCe0QXFO-uD6piVZQrZJby7nlGRV_gOp80Q</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Honsell, Furio</creator><creator>Lenisa, Marina</creator><general>Springer Berlin / Heidelberg</general><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>FFUUA</scope><scope>IQODW</scope></search><sort><creationdate>2004</creationdate><title>“Wave-Style” Geometry of Interaction Models in Rel Are Graph-Like Lambda-Models</title><author>Honsell, Furio ; Lenisa, Marina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p272t-7a42e4bd02fc34fbfd1b8b806f3838383c077fb75ac224957251e45fde058bd73</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2004</creationdate><topic>(linear) graph model</topic><topic>Applied sciences</topic><topic>categorical geometry of interaction</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Logical, boolean and switching functions</topic><topic>Theoretical computing</topic><topic>traced monoidal category</topic><topic>weak linear category</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Honsell, Furio</creatorcontrib><creatorcontrib>Lenisa, Marina</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Honsell, Furio</au><au>Lenisa, Marina</au><au>Coppo, Mario</au><au>Damiani, Ferruccio</au><au>Berardi, Stefano</au><au>Berardi, Stefano</au><au>Coppo, Mario</au><au>Damiani, Ferruccio</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>“Wave-Style” Geometry of Interaction Models in Rel Are Graph-Like Lambda-Models</atitle><btitle>Lecture notes in computer science</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2004</date><risdate>2004</risdate><volume>3085</volume><spage>242</spage><epage>258</epage><pages>242-258</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540221647</isbn><isbn>3540221646</isbn><eisbn>3540248498</eisbn><eisbn>9783540248491</eisbn><abstract>We study the connections between graph models and “wave-style” Geometry of Interaction (GoI) λ-models. The latters arise when Abramsky’s GoI axiomatization, which generalizes Girard’s original GoI, is applied to a traced monoidal category with the categorical product as tensor, using a countable power as the traced strong monoidal functor !. Abramsky hinted that the category Rel of sets and relations is the basic setting for traditional denotational “static semantics”. However, the category Rel together with the cartesian product apparently escapes original Abramsky’s axiomatization. Here we show that, by moving to the category Rel* of pointed sets and relations preserving the distinguished point, and by sligthly relaxing Abramsky’s GoI axiomatization, we can recover a large class of graph-like models as wave models. Furthermore, we show that the class of untyped λ-theories induced by wave-style GoI models is richer than that induced by game models.</abstract><cop>Germany</cop><pub>Springer Berlin / Heidelberg</pub><doi>10.1007/978-3-540-24849-1_16</doi><oclcid>934980391</oclcid><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Lecture notes in computer science, 2004, Vol.3085, p.242-258 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_15994031 |
source | Springer Books |
subjects | (linear) graph model Applied sciences categorical geometry of interaction Computer science control theory systems Exact sciences and technology Logical, boolean and switching functions Theoretical computing traced monoidal category weak linear category |
title | “Wave-Style” Geometry of Interaction Models in Rel Are Graph-Like Lambda-Models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T16%3A35%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=%E2%80%9CWave-Style%E2%80%9D%20Geometry%20of%20Interaction%20Models%20in%20Rel%20Are%20Graph-Like%20Lambda-Models&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=Honsell,%20Furio&rft.date=2004&rft.volume=3085&rft.spage=242&rft.epage=258&rft.pages=242-258&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540221647&rft.isbn_list=3540221646&rft_id=info:doi/10.1007/978-3-540-24849-1_16&rft_dat=%3Cproquest_pasca%3EEBC3087980_22_250%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540248498&rft.eisbn_list=9783540248491&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC3087980_22_250&rft_id=info:pmid/&rfr_iscdi=true |