Dynamic Local Feature Analysis for Face Recognition

This paper introduces an innovative method, Dynamic Local Feature Analysis (DLFA), for human face recognition. In our proposed method, the face shape and the facial texture information are combined together by using the Local Feature Analysis (LFA) technique. The shape information is obtained by usi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ng, Johnny, Cheung, Humphrey
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 240
container_issue
container_start_page 234
container_title
container_volume 3072
creator Ng, Johnny
Cheung, Humphrey
description This paper introduces an innovative method, Dynamic Local Feature Analysis (DLFA), for human face recognition. In our proposed method, the face shape and the facial texture information are combined together by using the Local Feature Analysis (LFA) technique. The shape information is obtained by using our proposed adaptive edge detecting method that can reduce the effect on different lighting conditions, while the texture information provides the details of the normalized facial feature on the image. Finally, both the shape and texture information is combined together by means of LFA for dimension reduction. As a result, a high recognition rate is achieved no matter the face is enrolled under different or bad lighting conditions.
doi_str_mv 10.1007/978-3-540-25948-0_33
format Book Chapter
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_15993997</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC3088302_38_252</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-ce351299809c2c62dac119a3af3c7523c7b1f48fc984015031e8f3b2d1b116113</originalsourceid><addsrcrecordid>eNpFkM1OwzAQhM2viErfgEMuHA1er5PYx6pQQKqEhOBsOa5dAmlS7HDo2-O0lfBhLc3OrL0fITfA7oCx6l5VkiItBKO8UEJSphFPyDTJmMS9xk5JBiUARRTq7L_HQZR4TjKGjFNVCbwkmUoWyUoBV2Qa4xdLB4CDKjKCD7vObBqbL3tr2nzhzPAbXD7rTLuLTcx9H_KFsS5_c7Zfd83Q9N01ufCmjW56vCfkY_H4Pn-my9enl_lsSS1yHKh1WABX6WVluS35ylgAZdB4tFXBU6nBC-mtkoJBwRCc9FjzFdQwboYTcnuYuzUxfc4H09km6m1oNibsNBRKoVJV8vGDL6ZWt3ZB133_HTUwPdLUCY1GneDoPTk90kwhPA4P_c-vi4N2Y8q6bgimtZ9mO7gQNTIpE0mNMoU5_gE7zW_Z</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC3088302_38_252</pqid></control><display><type>book_chapter</type><title>Dynamic Local Feature Analysis for Face Recognition</title><source>Springer Books</source><creator>Ng, Johnny ; Cheung, Humphrey</creator><contributor>Jain, Anil K ; Zhang, David Y ; Jain, Anil K. ; Zhang, David</contributor><creatorcontrib>Ng, Johnny ; Cheung, Humphrey ; Jain, Anil K ; Zhang, David Y ; Jain, Anil K. ; Zhang, David</creatorcontrib><description>This paper introduces an innovative method, Dynamic Local Feature Analysis (DLFA), for human face recognition. In our proposed method, the face shape and the facial texture information are combined together by using the Local Feature Analysis (LFA) technique. The shape information is obtained by using our proposed adaptive edge detecting method that can reduce the effect on different lighting conditions, while the texture information provides the details of the normalized facial feature on the image. Finally, both the shape and texture information is combined together by means of LFA for dimension reduction. As a result, a high recognition rate is achieved no matter the face is enrolled under different or bad lighting conditions.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540221463</identifier><identifier>ISBN: 3540221468</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540259480</identifier><identifier>EISBN: 3540259481</identifier><identifier>DOI: 10.1007/978-3-540-25948-0_33</identifier><identifier>OCLC: 934980641</identifier><identifier>LCCallNum: Q337.5</identifier><language>eng</language><publisher>Germany: Springer Berlin / Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Exact sciences and technology ; Face Database ; Face Image ; Face Recognition ; High Recognition Rate ; Pattern recognition. Digital image processing. Computational geometry ; Recognition Rate</subject><ispartof>Biometric Authentication, 2004, Vol.3072, p.234-240</ispartof><rights>Springer-Verlag Berlin Heidelberg 2004</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c323t-ce351299809c2c62dac119a3af3c7523c7b1f48fc984015031e8f3b2d1b116113</citedby><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/3088302-l.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/978-3-540-25948-0_33$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/978-3-540-25948-0_33$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4048,4049,27923,38253,41440,42509</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15993997$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Jain, Anil K</contributor><contributor>Zhang, David Y</contributor><contributor>Jain, Anil K.</contributor><contributor>Zhang, David</contributor><creatorcontrib>Ng, Johnny</creatorcontrib><creatorcontrib>Cheung, Humphrey</creatorcontrib><title>Dynamic Local Feature Analysis for Face Recognition</title><title>Biometric Authentication</title><description>This paper introduces an innovative method, Dynamic Local Feature Analysis (DLFA), for human face recognition. In our proposed method, the face shape and the facial texture information are combined together by using the Local Feature Analysis (LFA) technique. The shape information is obtained by using our proposed adaptive edge detecting method that can reduce the effect on different lighting conditions, while the texture information provides the details of the normalized facial feature on the image. Finally, both the shape and texture information is combined together by means of LFA for dimension reduction. As a result, a high recognition rate is achieved no matter the face is enrolled under different or bad lighting conditions.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Face Database</subject><subject>Face Image</subject><subject>Face Recognition</subject><subject>High Recognition Rate</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Recognition Rate</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540221463</isbn><isbn>3540221468</isbn><isbn>9783540259480</isbn><isbn>3540259481</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2004</creationdate><recordtype>book_chapter</recordtype><recordid>eNpFkM1OwzAQhM2viErfgEMuHA1er5PYx6pQQKqEhOBsOa5dAmlS7HDo2-O0lfBhLc3OrL0fITfA7oCx6l5VkiItBKO8UEJSphFPyDTJmMS9xk5JBiUARRTq7L_HQZR4TjKGjFNVCbwkmUoWyUoBV2Qa4xdLB4CDKjKCD7vObBqbL3tr2nzhzPAbXD7rTLuLTcx9H_KFsS5_c7Zfd83Q9N01ufCmjW56vCfkY_H4Pn-my9enl_lsSS1yHKh1WABX6WVluS35ylgAZdB4tFXBU6nBC-mtkoJBwRCc9FjzFdQwboYTcnuYuzUxfc4H09km6m1oNibsNBRKoVJV8vGDL6ZWt3ZB133_HTUwPdLUCY1GneDoPTk90kwhPA4P_c-vi4N2Y8q6bgimtZ9mO7gQNTIpE0mNMoU5_gE7zW_Z</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Ng, Johnny</creator><creator>Cheung, Humphrey</creator><general>Springer Berlin / Heidelberg</general><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>FFUUA</scope><scope>IQODW</scope></search><sort><creationdate>2004</creationdate><title>Dynamic Local Feature Analysis for Face Recognition</title><author>Ng, Johnny ; Cheung, Humphrey</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-ce351299809c2c62dac119a3af3c7523c7b1f48fc984015031e8f3b2d1b116113</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Face Database</topic><topic>Face Image</topic><topic>Face Recognition</topic><topic>High Recognition Rate</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Recognition Rate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ng, Johnny</creatorcontrib><creatorcontrib>Cheung, Humphrey</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ng, Johnny</au><au>Cheung, Humphrey</au><au>Jain, Anil K</au><au>Zhang, David Y</au><au>Jain, Anil K.</au><au>Zhang, David</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Dynamic Local Feature Analysis for Face Recognition</atitle><btitle>Biometric Authentication</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2004</date><risdate>2004</risdate><volume>3072</volume><spage>234</spage><epage>240</epage><pages>234-240</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540221463</isbn><isbn>3540221468</isbn><eisbn>9783540259480</eisbn><eisbn>3540259481</eisbn><abstract>This paper introduces an innovative method, Dynamic Local Feature Analysis (DLFA), for human face recognition. In our proposed method, the face shape and the facial texture information are combined together by using the Local Feature Analysis (LFA) technique. The shape information is obtained by using our proposed adaptive edge detecting method that can reduce the effect on different lighting conditions, while the texture information provides the details of the normalized facial feature on the image. Finally, both the shape and texture information is combined together by means of LFA for dimension reduction. As a result, a high recognition rate is achieved no matter the face is enrolled under different or bad lighting conditions.</abstract><cop>Germany</cop><pub>Springer Berlin / Heidelberg</pub><doi>10.1007/978-3-540-25948-0_33</doi><oclcid>934980641</oclcid><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Biometric Authentication, 2004, Vol.3072, p.234-240
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_15993997
source Springer Books
subjects Applied sciences
Artificial intelligence
Computer science
control theory
systems
Exact sciences and technology
Face Database
Face Image
Face Recognition
High Recognition Rate
Pattern recognition. Digital image processing. Computational geometry
Recognition Rate
title Dynamic Local Feature Analysis for Face Recognition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T00%3A02%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Dynamic%20Local%20Feature%20Analysis%20for%20Face%20Recognition&rft.btitle=Biometric%20Authentication&rft.au=Ng,%20Johnny&rft.date=2004&rft.volume=3072&rft.spage=234&rft.epage=240&rft.pages=234-240&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540221463&rft.isbn_list=3540221468&rft_id=info:doi/10.1007/978-3-540-25948-0_33&rft_dat=%3Cproquest_pasca%3EEBC3088302_38_252%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540259480&rft.eisbn_list=3540259481&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC3088302_38_252&rft_id=info:pmid/&rfr_iscdi=true