The Use of a Structural N-gram Language Model in Generation-Heavy Hybrid Machine Translation

This paper describes the use of a statistical structural N-gram model in the natural language generation component of a Spanish-English generation-heavy hybrid machine translation system. A structural N-gram model captures the relationship between words in a dependency representation without taking...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Habash, Nizar
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 69
container_issue
container_start_page 61
container_title
container_volume 3123
creator Habash, Nizar
description This paper describes the use of a statistical structural N-gram model in the natural language generation component of a Spanish-English generation-heavy hybrid machine translation system. A structural N-gram model captures the relationship between words in a dependency representation without taking into account the overall structure at the phrase level. The model is used together with other components in the system for lexical and structural selection. An evaluation of the machine translation system shows that the use of structural N-grams decreases runtime by 60% with no loss in translation quality.
doi_str_mv 10.1007/978-3-540-27823-8_7
format Book Chapter
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_15993488</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC3088236_13_69</sourcerecordid><originalsourceid>FETCH-LOGICAL-p270t-9e30d0e696ffb9e3c07b376e4d4c5d09d869ada7c096ef853b9cd636876ff9ee3</originalsourceid><addsrcrecordid>eNotkE1v2zAMhrV1HZZ2-QW76LKjVsq09XEsijYZkGyHJrcBgizTiTvXTiVnQP791LS8EBSflxAexr5J-CEB9I3VRqCoShCFNgUK4_QHdoX54TzDRzaTSkqBWNoLNs_4eVdgCdUnNgOEQlhd4mc2sxkxoEr9hc1TeoJcBRiFdsb-bPbEt4n42HLPH6d4DNMx-p7_Ervon_nKD7uj3xFfjw31vBv4ggaKfurGQSzJ_zvx5amOXcPXPuy7gfgm-iH1Z-Aru2x9n2j-3q_Z9uF-c7cUq9-Ln3e3K3EoNEzCEkIDpKxq2zoPAXSNWlHZlKFqwDZGWd94HcAqak2FtQ2NQmV0DlgivGbf3-4efAq-b_MPQpfcIXbPPp6crGw2YEzm5BuX8mrYUXT1OP5NToJ7Ve6yQ4cuW3RnxS4rz5ni_XYcX46UJkevoUDDlDWFvT9MFJNDMDmhnESnLP4HbwF-vA</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC3088236_13_69</pqid></control><display><type>book_chapter</type><title>The Use of a Structural N-gram Language Model in Generation-Heavy Hybrid Machine Translation</title><source>Springer Books</source><creator>Habash, Nizar</creator><contributor>Evans, Roger ; Belz, Anja ; Piwek, Paul ; Piwek, Paul ; Belz, Anja ; Evans, Roger</contributor><creatorcontrib>Habash, Nizar ; Evans, Roger ; Belz, Anja ; Piwek, Paul ; Piwek, Paul ; Belz, Anja ; Evans, Roger</creatorcontrib><description>This paper describes the use of a statistical structural N-gram model in the natural language generation component of a Spanish-English generation-heavy hybrid machine translation system. A structural N-gram model captures the relationship between words in a dependency representation without taking into account the overall structure at the phrase level. The model is used together with other components in the system for lexical and structural selection. An evaluation of the machine translation system shows that the use of structural N-grams decreases runtime by 60% with no loss in translation quality.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540223405</identifier><identifier>ISBN: 3540223401</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540278230</identifier><identifier>EISBN: 9783540278238</identifier><identifier>DOI: 10.1007/978-3-540-27823-8_7</identifier><identifier>OCLC: 934980647</identifier><identifier>LCCallNum: QA76.9.N38</identifier><language>eng</language><publisher>Germany: Springer Berlin / Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Computational Linguistics ; Computer science; control theory; systems ; Exact sciences and technology ; Machine Translation ; Natural Language Generation ; Speech and sound recognition and synthesis. Linguistics ; Thematic Role ; Translation Quality</subject><ispartof>Lecture notes in computer science, 2004, Vol.3123, p.61-69</ispartof><rights>Springer-Verlag Berlin Heidelberg 2004</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/3088236-l.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/978-3-540-27823-8_7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/978-3-540-27823-8_7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4036,4037,27902,38232,41418,42487</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15993488$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Evans, Roger</contributor><contributor>Belz, Anja</contributor><contributor>Piwek, Paul</contributor><contributor>Piwek, Paul</contributor><contributor>Belz, Anja</contributor><contributor>Evans, Roger</contributor><creatorcontrib>Habash, Nizar</creatorcontrib><title>The Use of a Structural N-gram Language Model in Generation-Heavy Hybrid Machine Translation</title><title>Lecture notes in computer science</title><description>This paper describes the use of a statistical structural N-gram model in the natural language generation component of a Spanish-English generation-heavy hybrid machine translation system. A structural N-gram model captures the relationship between words in a dependency representation without taking into account the overall structure at the phrase level. The model is used together with other components in the system for lexical and structural selection. An evaluation of the machine translation system shows that the use of structural N-grams decreases runtime by 60% with no loss in translation quality.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computational Linguistics</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Machine Translation</subject><subject>Natural Language Generation</subject><subject>Speech and sound recognition and synthesis. Linguistics</subject><subject>Thematic Role</subject><subject>Translation Quality</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540223405</isbn><isbn>3540223401</isbn><isbn>3540278230</isbn><isbn>9783540278238</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2004</creationdate><recordtype>book_chapter</recordtype><recordid>eNotkE1v2zAMhrV1HZZ2-QW76LKjVsq09XEsijYZkGyHJrcBgizTiTvXTiVnQP791LS8EBSflxAexr5J-CEB9I3VRqCoShCFNgUK4_QHdoX54TzDRzaTSkqBWNoLNs_4eVdgCdUnNgOEQlhd4mc2sxkxoEr9hc1TeoJcBRiFdsb-bPbEt4n42HLPH6d4DNMx-p7_Ervon_nKD7uj3xFfjw31vBv4ggaKfurGQSzJ_zvx5amOXcPXPuy7gfgm-iH1Z-Aru2x9n2j-3q_Z9uF-c7cUq9-Ln3e3K3EoNEzCEkIDpKxq2zoPAXSNWlHZlKFqwDZGWd94HcAqak2FtQ2NQmV0DlgivGbf3-4efAq-b_MPQpfcIXbPPp6crGw2YEzm5BuX8mrYUXT1OP5NToJ7Ve6yQ4cuW3RnxS4rz5ni_XYcX46UJkevoUDDlDWFvT9MFJNDMDmhnESnLP4HbwF-vA</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Habash, Nizar</creator><general>Springer Berlin / Heidelberg</general><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>FFUUA</scope><scope>IQODW</scope></search><sort><creationdate>2004</creationdate><title>The Use of a Structural N-gram Language Model in Generation-Heavy Hybrid Machine Translation</title><author>Habash, Nizar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p270t-9e30d0e696ffb9e3c07b376e4d4c5d09d869ada7c096ef853b9cd636876ff9ee3</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computational Linguistics</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Machine Translation</topic><topic>Natural Language Generation</topic><topic>Speech and sound recognition and synthesis. Linguistics</topic><topic>Thematic Role</topic><topic>Translation Quality</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Habash, Nizar</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Habash, Nizar</au><au>Evans, Roger</au><au>Belz, Anja</au><au>Piwek, Paul</au><au>Piwek, Paul</au><au>Belz, Anja</au><au>Evans, Roger</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>The Use of a Structural N-gram Language Model in Generation-Heavy Hybrid Machine Translation</atitle><btitle>Lecture notes in computer science</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2004</date><risdate>2004</risdate><volume>3123</volume><spage>61</spage><epage>69</epage><pages>61-69</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540223405</isbn><isbn>3540223401</isbn><eisbn>3540278230</eisbn><eisbn>9783540278238</eisbn><abstract>This paper describes the use of a statistical structural N-gram model in the natural language generation component of a Spanish-English generation-heavy hybrid machine translation system. A structural N-gram model captures the relationship between words in a dependency representation without taking into account the overall structure at the phrase level. The model is used together with other components in the system for lexical and structural selection. An evaluation of the machine translation system shows that the use of structural N-grams decreases runtime by 60% with no loss in translation quality.</abstract><cop>Germany</cop><pub>Springer Berlin / Heidelberg</pub><doi>10.1007/978-3-540-27823-8_7</doi><oclcid>934980647</oclcid><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Lecture notes in computer science, 2004, Vol.3123, p.61-69
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_15993488
source Springer Books
subjects Applied sciences
Artificial intelligence
Computational Linguistics
Computer science
control theory
systems
Exact sciences and technology
Machine Translation
Natural Language Generation
Speech and sound recognition and synthesis. Linguistics
Thematic Role
Translation Quality
title The Use of a Structural N-gram Language Model in Generation-Heavy Hybrid Machine Translation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T14%3A28%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=The%20Use%20of%20a%20Structural%20N-gram%20Language%20Model%20in%20Generation-Heavy%20Hybrid%20Machine%20Translation&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=Habash,%20Nizar&rft.date=2004&rft.volume=3123&rft.spage=61&rft.epage=69&rft.pages=61-69&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540223405&rft.isbn_list=3540223401&rft_id=info:doi/10.1007/978-3-540-27823-8_7&rft_dat=%3Cproquest_pasca%3EEBC3088236_13_69%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540278230&rft.eisbn_list=9783540278238&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC3088236_13_69&rft_id=info:pmid/&rfr_iscdi=true