Connectivity of Graphs Under Edge Flips
Given a set V of n vertices and a set \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{E}$\end{document} of m e...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 173 |
---|---|
container_issue | |
container_start_page | 161 |
container_title | |
container_volume | 3111 |
creator | Zeh, Norbert |
description | Given a set V of n vertices and a set \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathcal{E}$\end{document} of m edge pairs, we define a graph family \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathcal{G}(V, \mathcal{E})$\end{document} as the set of graphs that have vertex set V and contain exactly one edge from every pair in \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathcal{E}$\end{document}. We want to find a graph in \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathcal{G}(V, \mathcal{E})$\end{document} that has the minimal number of connected components. We show that, if the edge pairs in \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathcal{E}$\end{document} are non-disjoint, the problem is NP-hard even if the union of the graphs in \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathcal{G}(V, \mathcal{E})$\end{document} is planar. If the edge pairs are disjoint, we provide an \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathcal{O}(n^2 m)$\end{document}-time algorithm that finds a graph in \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsi |
doi_str_mv | 10.1007/978-3-540-27810-8_15 |
format | Book Chapter |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_15993253</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC3087237_20_172</sourcerecordid><originalsourceid>FETCH-LOGICAL-p272t-a7bc1d354363d809c734b6e9fa8cf69f2a6a617560bba589bd5fc574823ccad23</originalsourceid><addsrcrecordid>eNpFkMtOwzAQRc1TRKV_wCIbxMpgexw_lqhqC1IlNnRtOY7TBkIS7IDUv8d9SHgWtu7cufIchO4oeaSEyCctFQZccIKZVJRgZWhxhqZJhiQeNHWOMiooxQBcX_z3GIDWlygjQBjWksM1ynSySMW5uEHTGD9IOjSVEBl6mPVd593Y_DbjLu_rfBnssI35uqt8yOfVxueLthniLbqqbRv99HRP0Hoxf5-94NXb8nX2vMIDk2zEVpaOVukjIKBSRDsJvBRe11a5WuiaWWEFlYUgZWkLpcuqqF0huWLgnK0YTND9MXew0dm2DrZzTTRDaL5s2CUMWgMrIPnY0RdTq9v4YMq-_4yGErMnaNK-BkwCYg60zJ5gGoJTeOi_f3wcjd9POd-NwbZua4fRh2iAKMlAGpay0uMP7L9seg</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC3087237_20_172</pqid></control><display><type>book_chapter</type><title>Connectivity of Graphs Under Edge Flips</title><source>Springer Books</source><creator>Zeh, Norbert</creator><contributor>Hagerup, Torben ; Katajainen, Jyrki ; Hagerup, Torben ; Katajainen, Jyrki</contributor><creatorcontrib>Zeh, Norbert ; Hagerup, Torben ; Katajainen, Jyrki ; Hagerup, Torben ; Katajainen, Jyrki</creatorcontrib><description>Given a set V of n vertices and a set \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathcal{E}$\end{document} of m edge pairs, we define a graph family \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathcal{G}(V, \mathcal{E})$\end{document} as the set of graphs that have vertex set V and contain exactly one edge from every pair in \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathcal{E}$\end{document}. We want to find a graph in \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathcal{G}(V, \mathcal{E})$\end{document} that has the minimal number of connected components. We show that, if the edge pairs in \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathcal{E}$\end{document} are non-disjoint, the problem is NP-hard even if the union of the graphs in \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathcal{G}(V, \mathcal{E})$\end{document} is planar. If the edge pairs are disjoint, we provide an \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathcal{O}(n^2 m)$\end{document}-time algorithm that finds a graph in \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathcal{G}(V, \mathcal{E})$\end{document} with the minimal number of connected components.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540223399</identifier><identifier>ISBN: 3540223398</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540278108</identifier><identifier>EISBN: 3540278109</identifier><identifier>DOI: 10.1007/978-3-540-27810-8_15</identifier><identifier>OCLC: 934978446</identifier><identifier>LCCallNum: QA297-299.4</identifier><language>eng</language><publisher>Germany: Springer Berlin / Heidelberg</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Common Cycle ; Computer science; control theory; systems ; Conjunctive Normal Form ; Delaunay Triangulation ; Exact sciences and technology ; Local Transformation ; Span Tree ; Theoretical computing</subject><ispartof>Algorithm Theory - SWAT 2004, 2004, Vol.3111, p.161-173</ispartof><rights>Springer-Verlag Berlin Heidelberg 2004</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/3087237-l.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/978-3-540-27810-8_15$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/978-3-540-27810-8_15$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,776,777,781,786,787,790,4036,4037,27906,38236,41423,42492</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15993253$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Hagerup, Torben</contributor><contributor>Katajainen, Jyrki</contributor><contributor>Hagerup, Torben</contributor><contributor>Katajainen, Jyrki</contributor><creatorcontrib>Zeh, Norbert</creatorcontrib><title>Connectivity of Graphs Under Edge Flips</title><title>Algorithm Theory - SWAT 2004</title><description>Given a set V of n vertices and a set \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathcal{E}$\end{document} of m edge pairs, we define a graph family \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathcal{G}(V, \mathcal{E})$\end{document} as the set of graphs that have vertex set V and contain exactly one edge from every pair in \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathcal{E}$\end{document}. We want to find a graph in \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathcal{G}(V, \mathcal{E})$\end{document} that has the minimal number of connected components. We show that, if the edge pairs in \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathcal{E}$\end{document} are non-disjoint, the problem is NP-hard even if the union of the graphs in \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathcal{G}(V, \mathcal{E})$\end{document} is planar. If the edge pairs are disjoint, we provide an \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathcal{O}(n^2 m)$\end{document}-time algorithm that finds a graph in \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathcal{G}(V, \mathcal{E})$\end{document} with the minimal number of connected components.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Common Cycle</subject><subject>Computer science; control theory; systems</subject><subject>Conjunctive Normal Form</subject><subject>Delaunay Triangulation</subject><subject>Exact sciences and technology</subject><subject>Local Transformation</subject><subject>Span Tree</subject><subject>Theoretical computing</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540223399</isbn><isbn>3540223398</isbn><isbn>9783540278108</isbn><isbn>3540278109</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2004</creationdate><recordtype>book_chapter</recordtype><recordid>eNpFkMtOwzAQRc1TRKV_wCIbxMpgexw_lqhqC1IlNnRtOY7TBkIS7IDUv8d9SHgWtu7cufIchO4oeaSEyCctFQZccIKZVJRgZWhxhqZJhiQeNHWOMiooxQBcX_z3GIDWlygjQBjWksM1ynSySMW5uEHTGD9IOjSVEBl6mPVd593Y_DbjLu_rfBnssI35uqt8yOfVxueLthniLbqqbRv99HRP0Hoxf5-94NXb8nX2vMIDk2zEVpaOVukjIKBSRDsJvBRe11a5WuiaWWEFlYUgZWkLpcuqqF0huWLgnK0YTND9MXew0dm2DrZzTTRDaL5s2CUMWgMrIPnY0RdTq9v4YMq-_4yGErMnaNK-BkwCYg60zJ5gGoJTeOi_f3wcjd9POd-NwbZua4fRh2iAKMlAGpay0uMP7L9seg</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Zeh, Norbert</creator><general>Springer Berlin / Heidelberg</general><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>FFUUA</scope><scope>IQODW</scope></search><sort><creationdate>2004</creationdate><title>Connectivity of Graphs Under Edge Flips</title><author>Zeh, Norbert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p272t-a7bc1d354363d809c734b6e9fa8cf69f2a6a617560bba589bd5fc574823ccad23</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Common Cycle</topic><topic>Computer science; control theory; systems</topic><topic>Conjunctive Normal Form</topic><topic>Delaunay Triangulation</topic><topic>Exact sciences and technology</topic><topic>Local Transformation</topic><topic>Span Tree</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zeh, Norbert</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zeh, Norbert</au><au>Hagerup, Torben</au><au>Katajainen, Jyrki</au><au>Hagerup, Torben</au><au>Katajainen, Jyrki</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Connectivity of Graphs Under Edge Flips</atitle><btitle>Algorithm Theory - SWAT 2004</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2004</date><risdate>2004</risdate><volume>3111</volume><spage>161</spage><epage>173</epage><pages>161-173</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540223399</isbn><isbn>3540223398</isbn><eisbn>9783540278108</eisbn><eisbn>3540278109</eisbn><abstract>Given a set V of n vertices and a set \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathcal{E}$\end{document} of m edge pairs, we define a graph family \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathcal{G}(V, \mathcal{E})$\end{document} as the set of graphs that have vertex set V and contain exactly one edge from every pair in \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathcal{E}$\end{document}. We want to find a graph in \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathcal{G}(V, \mathcal{E})$\end{document} that has the minimal number of connected components. We show that, if the edge pairs in \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathcal{E}$\end{document} are non-disjoint, the problem is NP-hard even if the union of the graphs in \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathcal{G}(V, \mathcal{E})$\end{document} is planar. If the edge pairs are disjoint, we provide an \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathcal{O}(n^2 m)$\end{document}-time algorithm that finds a graph in \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathcal{G}(V, \mathcal{E})$\end{document} with the minimal number of connected components.</abstract><cop>Germany</cop><pub>Springer Berlin / Heidelberg</pub><doi>10.1007/978-3-540-27810-8_15</doi><oclcid>934978446</oclcid><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Algorithm Theory - SWAT 2004, 2004, Vol.3111, p.161-173 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_15993253 |
source | Springer Books |
subjects | Algorithmics. Computability. Computer arithmetics Applied sciences Common Cycle Computer science control theory systems Conjunctive Normal Form Delaunay Triangulation Exact sciences and technology Local Transformation Span Tree Theoretical computing |
title | Connectivity of Graphs Under Edge Flips |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T22%3A23%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Connectivity%20of%20Graphs%20Under%20Edge%20Flips&rft.btitle=Algorithm%20Theory%20-%20SWAT%202004&rft.au=Zeh,%20Norbert&rft.date=2004&rft.volume=3111&rft.spage=161&rft.epage=173&rft.pages=161-173&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540223399&rft.isbn_list=3540223398&rft_id=info:doi/10.1007/978-3-540-27810-8_15&rft_dat=%3Cproquest_pasca%3EEBC3087237_20_172%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540278108&rft.eisbn_list=3540278109&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC3087237_20_172&rft_id=info:pmid/&rfr_iscdi=true |