Connectivity of Graphs Under Edge Flips

Given a set V of n vertices and a set \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{E}$\end{document} of m e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Zeh, Norbert
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 173
container_issue
container_start_page 161
container_title
container_volume 3111
creator Zeh, Norbert
description Given a set V of n vertices and a set \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{E}$\end{document} of m edge pairs, we define a graph family \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{G}(V, \mathcal{E})$\end{document} as the set of graphs that have vertex set V and contain exactly one edge from every pair in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{E}$\end{document}. We want to find a graph in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{G}(V, \mathcal{E})$\end{document} that has the minimal number of connected components. We show that, if the edge pairs in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{E}$\end{document} are non-disjoint, the problem is NP-hard even if the union of the graphs in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{G}(V, \mathcal{E})$\end{document} is planar. If the edge pairs are disjoint, we provide an \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{O}(n^2 m)$\end{document}-time algorithm that finds a graph in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsi
doi_str_mv 10.1007/978-3-540-27810-8_15
format Book Chapter
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_15993253</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC3087237_20_172</sourcerecordid><originalsourceid>FETCH-LOGICAL-p272t-a7bc1d354363d809c734b6e9fa8cf69f2a6a617560bba589bd5fc574823ccad23</originalsourceid><addsrcrecordid>eNpFkMtOwzAQRc1TRKV_wCIbxMpgexw_lqhqC1IlNnRtOY7TBkIS7IDUv8d9SHgWtu7cufIchO4oeaSEyCctFQZccIKZVJRgZWhxhqZJhiQeNHWOMiooxQBcX_z3GIDWlygjQBjWksM1ynSySMW5uEHTGD9IOjSVEBl6mPVd593Y_DbjLu_rfBnssI35uqt8yOfVxueLthniLbqqbRv99HRP0Hoxf5-94NXb8nX2vMIDk2zEVpaOVukjIKBSRDsJvBRe11a5WuiaWWEFlYUgZWkLpcuqqF0huWLgnK0YTND9MXew0dm2DrZzTTRDaL5s2CUMWgMrIPnY0RdTq9v4YMq-_4yGErMnaNK-BkwCYg60zJ5gGoJTeOi_f3wcjd9POd-NwbZua4fRh2iAKMlAGpay0uMP7L9seg</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC3087237_20_172</pqid></control><display><type>book_chapter</type><title>Connectivity of Graphs Under Edge Flips</title><source>Springer Books</source><creator>Zeh, Norbert</creator><contributor>Hagerup, Torben ; Katajainen, Jyrki ; Hagerup, Torben ; Katajainen, Jyrki</contributor><creatorcontrib>Zeh, Norbert ; Hagerup, Torben ; Katajainen, Jyrki ; Hagerup, Torben ; Katajainen, Jyrki</creatorcontrib><description>Given a set V of n vertices and a set \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{E}$\end{document} of m edge pairs, we define a graph family \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{G}(V, \mathcal{E})$\end{document} as the set of graphs that have vertex set V and contain exactly one edge from every pair in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{E}$\end{document}. We want to find a graph in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{G}(V, \mathcal{E})$\end{document} that has the minimal number of connected components. We show that, if the edge pairs in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{E}$\end{document} are non-disjoint, the problem is NP-hard even if the union of the graphs in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{G}(V, \mathcal{E})$\end{document} is planar. If the edge pairs are disjoint, we provide an \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{O}(n^2 m)$\end{document}-time algorithm that finds a graph in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{G}(V, \mathcal{E})$\end{document} with the minimal number of connected components.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540223399</identifier><identifier>ISBN: 3540223398</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540278108</identifier><identifier>EISBN: 3540278109</identifier><identifier>DOI: 10.1007/978-3-540-27810-8_15</identifier><identifier>OCLC: 934978446</identifier><identifier>LCCallNum: QA297-299.4</identifier><language>eng</language><publisher>Germany: Springer Berlin / Heidelberg</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Common Cycle ; Computer science; control theory; systems ; Conjunctive Normal Form ; Delaunay Triangulation ; Exact sciences and technology ; Local Transformation ; Span Tree ; Theoretical computing</subject><ispartof>Algorithm Theory - SWAT 2004, 2004, Vol.3111, p.161-173</ispartof><rights>Springer-Verlag Berlin Heidelberg 2004</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/3087237-l.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/978-3-540-27810-8_15$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/978-3-540-27810-8_15$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,776,777,781,786,787,790,4036,4037,27906,38236,41423,42492</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15993253$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Hagerup, Torben</contributor><contributor>Katajainen, Jyrki</contributor><contributor>Hagerup, Torben</contributor><contributor>Katajainen, Jyrki</contributor><creatorcontrib>Zeh, Norbert</creatorcontrib><title>Connectivity of Graphs Under Edge Flips</title><title>Algorithm Theory - SWAT 2004</title><description>Given a set V of n vertices and a set \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{E}$\end{document} of m edge pairs, we define a graph family \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{G}(V, \mathcal{E})$\end{document} as the set of graphs that have vertex set V and contain exactly one edge from every pair in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{E}$\end{document}. We want to find a graph in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{G}(V, \mathcal{E})$\end{document} that has the minimal number of connected components. We show that, if the edge pairs in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{E}$\end{document} are non-disjoint, the problem is NP-hard even if the union of the graphs in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{G}(V, \mathcal{E})$\end{document} is planar. If the edge pairs are disjoint, we provide an \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{O}(n^2 m)$\end{document}-time algorithm that finds a graph in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{G}(V, \mathcal{E})$\end{document} with the minimal number of connected components.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Common Cycle</subject><subject>Computer science; control theory; systems</subject><subject>Conjunctive Normal Form</subject><subject>Delaunay Triangulation</subject><subject>Exact sciences and technology</subject><subject>Local Transformation</subject><subject>Span Tree</subject><subject>Theoretical computing</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540223399</isbn><isbn>3540223398</isbn><isbn>9783540278108</isbn><isbn>3540278109</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2004</creationdate><recordtype>book_chapter</recordtype><recordid>eNpFkMtOwzAQRc1TRKV_wCIbxMpgexw_lqhqC1IlNnRtOY7TBkIS7IDUv8d9SHgWtu7cufIchO4oeaSEyCctFQZccIKZVJRgZWhxhqZJhiQeNHWOMiooxQBcX_z3GIDWlygjQBjWksM1ynSySMW5uEHTGD9IOjSVEBl6mPVd593Y_DbjLu_rfBnssI35uqt8yOfVxueLthniLbqqbRv99HRP0Hoxf5-94NXb8nX2vMIDk2zEVpaOVukjIKBSRDsJvBRe11a5WuiaWWEFlYUgZWkLpcuqqF0huWLgnK0YTND9MXew0dm2DrZzTTRDaL5s2CUMWgMrIPnY0RdTq9v4YMq-_4yGErMnaNK-BkwCYg60zJ5gGoJTeOi_f3wcjd9POd-NwbZua4fRh2iAKMlAGpay0uMP7L9seg</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Zeh, Norbert</creator><general>Springer Berlin / Heidelberg</general><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>FFUUA</scope><scope>IQODW</scope></search><sort><creationdate>2004</creationdate><title>Connectivity of Graphs Under Edge Flips</title><author>Zeh, Norbert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p272t-a7bc1d354363d809c734b6e9fa8cf69f2a6a617560bba589bd5fc574823ccad23</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Common Cycle</topic><topic>Computer science; control theory; systems</topic><topic>Conjunctive Normal Form</topic><topic>Delaunay Triangulation</topic><topic>Exact sciences and technology</topic><topic>Local Transformation</topic><topic>Span Tree</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zeh, Norbert</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zeh, Norbert</au><au>Hagerup, Torben</au><au>Katajainen, Jyrki</au><au>Hagerup, Torben</au><au>Katajainen, Jyrki</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Connectivity of Graphs Under Edge Flips</atitle><btitle>Algorithm Theory - SWAT 2004</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2004</date><risdate>2004</risdate><volume>3111</volume><spage>161</spage><epage>173</epage><pages>161-173</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540223399</isbn><isbn>3540223398</isbn><eisbn>9783540278108</eisbn><eisbn>3540278109</eisbn><abstract>Given a set V of n vertices and a set \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{E}$\end{document} of m edge pairs, we define a graph family \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{G}(V, \mathcal{E})$\end{document} as the set of graphs that have vertex set V and contain exactly one edge from every pair in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{E}$\end{document}. We want to find a graph in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{G}(V, \mathcal{E})$\end{document} that has the minimal number of connected components. We show that, if the edge pairs in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{E}$\end{document} are non-disjoint, the problem is NP-hard even if the union of the graphs in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{G}(V, \mathcal{E})$\end{document} is planar. If the edge pairs are disjoint, we provide an \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{O}(n^2 m)$\end{document}-time algorithm that finds a graph in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{G}(V, \mathcal{E})$\end{document} with the minimal number of connected components.</abstract><cop>Germany</cop><pub>Springer Berlin / Heidelberg</pub><doi>10.1007/978-3-540-27810-8_15</doi><oclcid>934978446</oclcid><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Algorithm Theory - SWAT 2004, 2004, Vol.3111, p.161-173
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_15993253
source Springer Books
subjects Algorithmics. Computability. Computer arithmetics
Applied sciences
Common Cycle
Computer science
control theory
systems
Conjunctive Normal Form
Delaunay Triangulation
Exact sciences and technology
Local Transformation
Span Tree
Theoretical computing
title Connectivity of Graphs Under Edge Flips
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T22%3A23%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Connectivity%20of%20Graphs%20Under%20Edge%20Flips&rft.btitle=Algorithm%20Theory%20-%20SWAT%202004&rft.au=Zeh,%20Norbert&rft.date=2004&rft.volume=3111&rft.spage=161&rft.epage=173&rft.pages=161-173&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540223399&rft.isbn_list=3540223398&rft_id=info:doi/10.1007/978-3-540-27810-8_15&rft_dat=%3Cproquest_pasca%3EEBC3087237_20_172%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540278108&rft.eisbn_list=3540278109&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC3087237_20_172&rft_id=info:pmid/&rfr_iscdi=true