Compressed Compact Suffix Arrays

The compact suffix array (CSA) is a space-efficient full-text index, which is fast in practice to search for patterns in a static text. Compared to other compressed suffix arrays (Grossi and Vitter, Sadakane, Ferragina and Manzini), the CSA is significantly larger (2.7 times the text size, as oppose...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Mäkinen, Veli, Navarro, Gonzalo
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 433
container_issue
container_start_page 420
container_title
container_volume 3109
creator Mäkinen, Veli
Navarro, Gonzalo
description The compact suffix array (CSA) is a space-efficient full-text index, which is fast in practice to search for patterns in a static text. Compared to other compressed suffix arrays (Grossi and Vitter, Sadakane, Ferragina and Manzini), the CSA is significantly larger (2.7 times the text size, as opposed to 0.6–0.8 of compressed suffix arrays). The space of the CSA includes that of the text, which the CSA needs separately available. Compressed suffix arrays, on the other hand, include the text, that is, they are self-indexes. Although compressed suffix arrays are very fast to determine the number of occurrences of a pattern, they are in practice very slow to report even a few occurrence positions or text contexts. In this aspect the CSA is much faster. In this paper we contribute to this space-time trade off by introducing the Compressed CSA (CCSA), a self-index that improves the space usage of the CSA in exchange for search speed. We show that the occ occurrence positions of a pattern of length m in a text of length n can be reported in O((m+occ)log n) time using the CCSA, whose representation needs O(n(1+Hklog n)) bits for any k, Hk being the k-th order empirical entropy of the text. In practice the CCSA takes 1.6 times the text size (and includes the text). This is still larger than current compressed suffix arrays, and similar in size to the LZ-index of Navarro. Search times are by far better than for self-indexes that take less space than the text, and competitive against the LZ-index and versions of compressed suffix arrays tailored to take 1.6 times the text size.
doi_str_mv 10.1007/978-3-540-27801-6_32
format Book Chapter
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_15992835</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC3087579_38_430</sourcerecordid><originalsourceid>FETCH-LOGICAL-p272t-14b4f3b15e0f8b08d7e6e8d07ba25b7c15b02e82e125b43bc0abf22665b4f8983</originalsourceid><addsrcrecordid>eNotkEtPQyEQhfEZr7X_wEU3LtGBgQssm8ZX0sSFmrgjcAta7eMKt4n999LbsoE5Z85M-Ai5ZnDLANSdUZoilQIoVxoYrS3yIzIsMhax1-pjUrGaMYoozAm57A2Ogn2ckgoQODVK4DmpTPGV4RIuyDDnbyiHccmlqMhosl62KeQcZv3TNd3odRPj_G80Tslt8xU5i26Rw_BwD8j7w_3b5IlOXx6fJ-MpbbniHWXCi4ieyQBRe9AzFeqgZ6C849KrhkkPPGgeymIv0DfgfOS8rksVtdE4IDf7ua3LjVvE5FbNPNs2zZcubS2TxvDy9dLH9325WKvPkKxfr3-yZWB33GwBZNEWErZnZHfcSggPw9P6dxNyZ8Mu1YRVl9yi-XJtF1K2CFpJZSxqKxDwH8vCaXk</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC3087579_38_430</pqid></control><display><type>book_chapter</type><title>Compressed Compact Suffix Arrays</title><source>Springer Books</source><creator>Mäkinen, Veli ; Navarro, Gonzalo</creator><contributor>Sahinalp, Suleyman C ; Dogrusoz, Ugur ; Muthukrishnan, S ; Muthukrishnan, S. ; Sahinalp, Suleyman Cenk ; Dogrusoz, Ugur</contributor><creatorcontrib>Mäkinen, Veli ; Navarro, Gonzalo ; Sahinalp, Suleyman C ; Dogrusoz, Ugur ; Muthukrishnan, S ; Muthukrishnan, S. ; Sahinalp, Suleyman Cenk ; Dogrusoz, Ugur</creatorcontrib><description>The compact suffix array (CSA) is a space-efficient full-text index, which is fast in practice to search for patterns in a static text. Compared to other compressed suffix arrays (Grossi and Vitter, Sadakane, Ferragina and Manzini), the CSA is significantly larger (2.7 times the text size, as opposed to 0.6–0.8 of compressed suffix arrays). The space of the CSA includes that of the text, which the CSA needs separately available. Compressed suffix arrays, on the other hand, include the text, that is, they are self-indexes. Although compressed suffix arrays are very fast to determine the number of occurrences of a pattern, they are in practice very slow to report even a few occurrence positions or text contexts. In this aspect the CSA is much faster. In this paper we contribute to this space-time trade off by introducing the Compressed CSA (CCSA), a self-index that improves the space usage of the CSA in exchange for search speed. We show that the occ occurrence positions of a pattern of length m in a text of length n can be reported in O((m+occ)log n) time using the CCSA, whose representation needs O(n(1+Hklog n)) bits for any k, Hk being the k-th order empirical entropy of the text. In practice the CCSA takes 1.6 times the text size (and includes the text). This is still larger than current compressed suffix arrays, and similar in size to the LZ-index of Navarro. Search times are by far better than for self-indexes that take less space than the text, and competitive against the LZ-index and versions of compressed suffix arrays tailored to take 1.6 times the text size.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 354022341X</identifier><identifier>ISBN: 9783540223412</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540278016</identifier><identifier>EISBN: 354027801X</identifier><identifier>DOI: 10.1007/978-3-540-27801-6_32</identifier><identifier>OCLC: 934979250</identifier><identifier>LCCallNum: Q337.5</identifier><language>eng</language><publisher>Germany: Springer Berlin / Heidelberg</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Binary Search ; Computer science; control theory; systems ; Exact sciences and technology ; Rank Query ; Select Query ; Text Context ; Text Size ; Theoretical computing</subject><ispartof>Combinatorial Pattern Matching, 2004, Vol.3109, p.420-433</ispartof><rights>Springer-Verlag Berlin Heidelberg 2004</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/3087579-l.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/978-3-540-27801-6_32$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/978-3-540-27801-6_32$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4049,4050,27924,38254,41441,42510</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15992835$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Sahinalp, Suleyman C</contributor><contributor>Dogrusoz, Ugur</contributor><contributor>Muthukrishnan, S</contributor><contributor>Muthukrishnan, S.</contributor><contributor>Sahinalp, Suleyman Cenk</contributor><contributor>Dogrusoz, Ugur</contributor><creatorcontrib>Mäkinen, Veli</creatorcontrib><creatorcontrib>Navarro, Gonzalo</creatorcontrib><title>Compressed Compact Suffix Arrays</title><title>Combinatorial Pattern Matching</title><description>The compact suffix array (CSA) is a space-efficient full-text index, which is fast in practice to search for patterns in a static text. Compared to other compressed suffix arrays (Grossi and Vitter, Sadakane, Ferragina and Manzini), the CSA is significantly larger (2.7 times the text size, as opposed to 0.6–0.8 of compressed suffix arrays). The space of the CSA includes that of the text, which the CSA needs separately available. Compressed suffix arrays, on the other hand, include the text, that is, they are self-indexes. Although compressed suffix arrays are very fast to determine the number of occurrences of a pattern, they are in practice very slow to report even a few occurrence positions or text contexts. In this aspect the CSA is much faster. In this paper we contribute to this space-time trade off by introducing the Compressed CSA (CCSA), a self-index that improves the space usage of the CSA in exchange for search speed. We show that the occ occurrence positions of a pattern of length m in a text of length n can be reported in O((m+occ)log n) time using the CCSA, whose representation needs O(n(1+Hklog n)) bits for any k, Hk being the k-th order empirical entropy of the text. In practice the CCSA takes 1.6 times the text size (and includes the text). This is still larger than current compressed suffix arrays, and similar in size to the LZ-index of Navarro. Search times are by far better than for self-indexes that take less space than the text, and competitive against the LZ-index and versions of compressed suffix arrays tailored to take 1.6 times the text size.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Binary Search</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Rank Query</subject><subject>Select Query</subject><subject>Text Context</subject><subject>Text Size</subject><subject>Theoretical computing</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>354022341X</isbn><isbn>9783540223412</isbn><isbn>9783540278016</isbn><isbn>354027801X</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2004</creationdate><recordtype>book_chapter</recordtype><recordid>eNotkEtPQyEQhfEZr7X_wEU3LtGBgQssm8ZX0sSFmrgjcAta7eMKt4n999LbsoE5Z85M-Ai5ZnDLANSdUZoilQIoVxoYrS3yIzIsMhax1-pjUrGaMYoozAm57A2Ogn2ckgoQODVK4DmpTPGV4RIuyDDnbyiHccmlqMhosl62KeQcZv3TNd3odRPj_G80Tslt8xU5i26Rw_BwD8j7w_3b5IlOXx6fJ-MpbbniHWXCi4ieyQBRe9AzFeqgZ6C849KrhkkPPGgeymIv0DfgfOS8rksVtdE4IDf7ua3LjVvE5FbNPNs2zZcubS2TxvDy9dLH9325WKvPkKxfr3-yZWB33GwBZNEWErZnZHfcSggPw9P6dxNyZ8Mu1YRVl9yi-XJtF1K2CFpJZSxqKxDwH8vCaXk</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Mäkinen, Veli</creator><creator>Navarro, Gonzalo</creator><general>Springer Berlin / Heidelberg</general><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>FFUUA</scope><scope>IQODW</scope></search><sort><creationdate>2004</creationdate><title>Compressed Compact Suffix Arrays</title><author>Mäkinen, Veli ; Navarro, Gonzalo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p272t-14b4f3b15e0f8b08d7e6e8d07ba25b7c15b02e82e125b43bc0abf22665b4f8983</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Binary Search</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Rank Query</topic><topic>Select Query</topic><topic>Text Context</topic><topic>Text Size</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mäkinen, Veli</creatorcontrib><creatorcontrib>Navarro, Gonzalo</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mäkinen, Veli</au><au>Navarro, Gonzalo</au><au>Sahinalp, Suleyman C</au><au>Dogrusoz, Ugur</au><au>Muthukrishnan, S</au><au>Muthukrishnan, S.</au><au>Sahinalp, Suleyman Cenk</au><au>Dogrusoz, Ugur</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Compressed Compact Suffix Arrays</atitle><btitle>Combinatorial Pattern Matching</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2004</date><risdate>2004</risdate><volume>3109</volume><spage>420</spage><epage>433</epage><pages>420-433</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>354022341X</isbn><isbn>9783540223412</isbn><eisbn>9783540278016</eisbn><eisbn>354027801X</eisbn><abstract>The compact suffix array (CSA) is a space-efficient full-text index, which is fast in practice to search for patterns in a static text. Compared to other compressed suffix arrays (Grossi and Vitter, Sadakane, Ferragina and Manzini), the CSA is significantly larger (2.7 times the text size, as opposed to 0.6–0.8 of compressed suffix arrays). The space of the CSA includes that of the text, which the CSA needs separately available. Compressed suffix arrays, on the other hand, include the text, that is, they are self-indexes. Although compressed suffix arrays are very fast to determine the number of occurrences of a pattern, they are in practice very slow to report even a few occurrence positions or text contexts. In this aspect the CSA is much faster. In this paper we contribute to this space-time trade off by introducing the Compressed CSA (CCSA), a self-index that improves the space usage of the CSA in exchange for search speed. We show that the occ occurrence positions of a pattern of length m in a text of length n can be reported in O((m+occ)log n) time using the CCSA, whose representation needs O(n(1+Hklog n)) bits for any k, Hk being the k-th order empirical entropy of the text. In practice the CCSA takes 1.6 times the text size (and includes the text). This is still larger than current compressed suffix arrays, and similar in size to the LZ-index of Navarro. Search times are by far better than for self-indexes that take less space than the text, and competitive against the LZ-index and versions of compressed suffix arrays tailored to take 1.6 times the text size.</abstract><cop>Germany</cop><pub>Springer Berlin / Heidelberg</pub><doi>10.1007/978-3-540-27801-6_32</doi><oclcid>934979250</oclcid><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Combinatorial Pattern Matching, 2004, Vol.3109, p.420-433
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_15992835
source Springer Books
subjects Algorithmics. Computability. Computer arithmetics
Applied sciences
Binary Search
Computer science
control theory
systems
Exact sciences and technology
Rank Query
Select Query
Text Context
Text Size
Theoretical computing
title Compressed Compact Suffix Arrays
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T13%3A38%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Compressed%20Compact%20Suffix%20Arrays&rft.btitle=Combinatorial%20Pattern%20Matching&rft.au=M%C3%A4kinen,%20Veli&rft.date=2004&rft.volume=3109&rft.spage=420&rft.epage=433&rft.pages=420-433&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=354022341X&rft.isbn_list=9783540223412&rft_id=info:doi/10.1007/978-3-540-27801-6_32&rft_dat=%3Cproquest_pasca%3EEBC3087579_38_430%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540278016&rft.eisbn_list=354027801X&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC3087579_38_430&rft_id=info:pmid/&rfr_iscdi=true