A Linear-Time Algorithm for Computing Translocation Distance between Signed Genomes
The study of evolution based on rearrangements leads to a rearrangement distance problem, i.e., computing the minimum number of rearrangement events required to transform one geonome to another. In this paper we study the translocation distance problem, modeling the evolution of genomes by transloca...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 332 |
---|---|
container_issue | |
container_start_page | 323 |
container_title | |
container_volume | 3109 |
creator | Li, Guojun Qi, Xingqin Wang, Xiaoli Zhu, Binhai |
description | The study of evolution based on rearrangements leads to a rearrangement distance problem, i.e., computing the minimum number of rearrangement events required to transform one geonome to another. In this paper we study the translocation distance problem, modeling the evolution of genomes by translocations. We present a linear-time algorithm for computing the translocation distance between signed genomes in this paper, improving a previous O(n3) bound by Hannenhalli in 1996. |
doi_str_mv | 10.1007/978-3-540-27801-6_24 |
format | Book Chapter |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_15992830</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC3087579_30_333</sourcerecordid><originalsourceid>FETCH-LOGICAL-p272t-8f0a06b26e12721b81cf5e40859a7988b122c2b6983da103528006a741745643</originalsourceid><addsrcrecordid>eNotkE9PGzEQxV1aUFOab8DBlx5Nx__W9jEKlCJF6oEcerO8ize47NqLbVT129cJzGU07808jX4IXVG4pgDqu1GacCIFEKY0UNJZJj6gdZN5E09ad4ZWtKOUcC7MR_TlZDAu6O9PaAUcGDFK8Au0Ms1Xhkn4jNal_IFWlEkmxQo9bPAuRO8y2YfZ4810SDnUpxmPKeNtmpfXGuIB77OLZUqDqyFFfBNKdXHwuPf1r_cRP4RD9I_4zsc0-_IVnY9uKn793i_R_sftfvuT7H7d3W83O7IwxSrRIzjoetZ52mbaazqM0gvQ0jhltO4pYwPrO6P5o6PAJdMAnVOCKiE7wS_Rt7fYxZXBTWN7cQjFLjnMLv-zVBrDNIe2x972SrPiwWfbp_RcLAV7JG0bUsttY2dPVO2RdDvi7-E5vbz6Uq0_Xg0-1uym4ckt1ediOWgllWnd8lb_AbyKeiw</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC3087579_30_333</pqid></control><display><type>book_chapter</type><title>A Linear-Time Algorithm for Computing Translocation Distance between Signed Genomes</title><source>Springer Books</source><creator>Li, Guojun ; Qi, Xingqin ; Wang, Xiaoli ; Zhu, Binhai</creator><contributor>Sahinalp, Suleyman C ; Dogrusoz, Ugur ; Muthukrishnan, S ; Muthukrishnan, S. ; Sahinalp, Suleyman Cenk ; Dogrusoz, Ugur</contributor><creatorcontrib>Li, Guojun ; Qi, Xingqin ; Wang, Xiaoli ; Zhu, Binhai ; Sahinalp, Suleyman C ; Dogrusoz, Ugur ; Muthukrishnan, S ; Muthukrishnan, S. ; Sahinalp, Suleyman Cenk ; Dogrusoz, Ugur</creatorcontrib><description>The study of evolution based on rearrangements leads to a rearrangement distance problem, i.e., computing the minimum number of rearrangement events required to transform one geonome to another. In this paper we study the translocation distance problem, modeling the evolution of genomes by translocations. We present a linear-time algorithm for computing the translocation distance between signed genomes in this paper, improving a previous O(n3) bound by Hannenhalli in 1996.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 354022341X</identifier><identifier>ISBN: 9783540223412</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540278016</identifier><identifier>EISBN: 354027801X</identifier><identifier>DOI: 10.1007/978-3-540-27801-6_24</identifier><identifier>OCLC: 934979250</identifier><identifier>LCCallNum: Q337.5</identifier><language>eng</language><publisher>Germany: Springer Berlin / Heidelberg</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Computer science; control theory; systems ; Exact sciences and technology ; Nodal Gene ; Rearrangement Event ; Reciprocal Translocation ; Signed Genome ; Target Genome ; Theoretical computing</subject><ispartof>Combinatorial Pattern Matching, 2004, Vol.3109, p.323-332</ispartof><rights>Springer-Verlag Berlin Heidelberg 2004</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/3087579-l.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/978-3-540-27801-6_24$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/978-3-540-27801-6_24$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4048,4049,27923,38253,41440,42509</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15992830$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Sahinalp, Suleyman C</contributor><contributor>Dogrusoz, Ugur</contributor><contributor>Muthukrishnan, S</contributor><contributor>Muthukrishnan, S.</contributor><contributor>Sahinalp, Suleyman Cenk</contributor><contributor>Dogrusoz, Ugur</contributor><creatorcontrib>Li, Guojun</creatorcontrib><creatorcontrib>Qi, Xingqin</creatorcontrib><creatorcontrib>Wang, Xiaoli</creatorcontrib><creatorcontrib>Zhu, Binhai</creatorcontrib><title>A Linear-Time Algorithm for Computing Translocation Distance between Signed Genomes</title><title>Combinatorial Pattern Matching</title><description>The study of evolution based on rearrangements leads to a rearrangement distance problem, i.e., computing the minimum number of rearrangement events required to transform one geonome to another. In this paper we study the translocation distance problem, modeling the evolution of genomes by translocations. We present a linear-time algorithm for computing the translocation distance between signed genomes in this paper, improving a previous O(n3) bound by Hannenhalli in 1996.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Nodal Gene</subject><subject>Rearrangement Event</subject><subject>Reciprocal Translocation</subject><subject>Signed Genome</subject><subject>Target Genome</subject><subject>Theoretical computing</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>354022341X</isbn><isbn>9783540223412</isbn><isbn>9783540278016</isbn><isbn>354027801X</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2004</creationdate><recordtype>book_chapter</recordtype><recordid>eNotkE9PGzEQxV1aUFOab8DBlx5Nx__W9jEKlCJF6oEcerO8ize47NqLbVT129cJzGU07808jX4IXVG4pgDqu1GacCIFEKY0UNJZJj6gdZN5E09ad4ZWtKOUcC7MR_TlZDAu6O9PaAUcGDFK8Au0Ms1Xhkn4jNal_IFWlEkmxQo9bPAuRO8y2YfZ4810SDnUpxmPKeNtmpfXGuIB77OLZUqDqyFFfBNKdXHwuPf1r_cRP4RD9I_4zsc0-_IVnY9uKn793i_R_sftfvuT7H7d3W83O7IwxSrRIzjoetZ52mbaazqM0gvQ0jhltO4pYwPrO6P5o6PAJdMAnVOCKiE7wS_Rt7fYxZXBTWN7cQjFLjnMLv-zVBrDNIe2x972SrPiwWfbp_RcLAV7JG0bUsttY2dPVO2RdDvi7-E5vbz6Uq0_Xg0-1uym4ckt1ediOWgllWnd8lb_AbyKeiw</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Li, Guojun</creator><creator>Qi, Xingqin</creator><creator>Wang, Xiaoli</creator><creator>Zhu, Binhai</creator><general>Springer Berlin / Heidelberg</general><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>FFUUA</scope><scope>IQODW</scope></search><sort><creationdate>2004</creationdate><title>A Linear-Time Algorithm for Computing Translocation Distance between Signed Genomes</title><author>Li, Guojun ; Qi, Xingqin ; Wang, Xiaoli ; Zhu, Binhai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p272t-8f0a06b26e12721b81cf5e40859a7988b122c2b6983da103528006a741745643</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Nodal Gene</topic><topic>Rearrangement Event</topic><topic>Reciprocal Translocation</topic><topic>Signed Genome</topic><topic>Target Genome</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Guojun</creatorcontrib><creatorcontrib>Qi, Xingqin</creatorcontrib><creatorcontrib>Wang, Xiaoli</creatorcontrib><creatorcontrib>Zhu, Binhai</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Guojun</au><au>Qi, Xingqin</au><au>Wang, Xiaoli</au><au>Zhu, Binhai</au><au>Sahinalp, Suleyman C</au><au>Dogrusoz, Ugur</au><au>Muthukrishnan, S</au><au>Muthukrishnan, S.</au><au>Sahinalp, Suleyman Cenk</au><au>Dogrusoz, Ugur</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>A Linear-Time Algorithm for Computing Translocation Distance between Signed Genomes</atitle><btitle>Combinatorial Pattern Matching</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2004</date><risdate>2004</risdate><volume>3109</volume><spage>323</spage><epage>332</epage><pages>323-332</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>354022341X</isbn><isbn>9783540223412</isbn><eisbn>9783540278016</eisbn><eisbn>354027801X</eisbn><abstract>The study of evolution based on rearrangements leads to a rearrangement distance problem, i.e., computing the minimum number of rearrangement events required to transform one geonome to another. In this paper we study the translocation distance problem, modeling the evolution of genomes by translocations. We present a linear-time algorithm for computing the translocation distance between signed genomes in this paper, improving a previous O(n3) bound by Hannenhalli in 1996.</abstract><cop>Germany</cop><pub>Springer Berlin / Heidelberg</pub><doi>10.1007/978-3-540-27801-6_24</doi><oclcid>934979250</oclcid><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Combinatorial Pattern Matching, 2004, Vol.3109, p.323-332 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_15992830 |
source | Springer Books |
subjects | Algorithmics. Computability. Computer arithmetics Applied sciences Computer science control theory systems Exact sciences and technology Nodal Gene Rearrangement Event Reciprocal Translocation Signed Genome Target Genome Theoretical computing |
title | A Linear-Time Algorithm for Computing Translocation Distance between Signed Genomes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T18%3A06%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=A%20Linear-Time%20Algorithm%20for%20Computing%20Translocation%20Distance%20between%20Signed%20Genomes&rft.btitle=Combinatorial%20Pattern%20Matching&rft.au=Li,%20Guojun&rft.date=2004&rft.volume=3109&rft.spage=323&rft.epage=332&rft.pages=323-332&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=354022341X&rft.isbn_list=9783540223412&rft_id=info:doi/10.1007/978-3-540-27801-6_24&rft_dat=%3Cproquest_pasca%3EEBC3087579_30_333%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540278016&rft.eisbn_list=354027801X&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC3087579_30_333&rft_id=info:pmid/&rfr_iscdi=true |