A Linear-Time Algorithm for Computing Translocation Distance between Signed Genomes

The study of evolution based on rearrangements leads to a rearrangement distance problem, i.e., computing the minimum number of rearrangement events required to transform one geonome to another. In this paper we study the translocation distance problem, modeling the evolution of genomes by transloca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Li, Guojun, Qi, Xingqin, Wang, Xiaoli, Zhu, Binhai
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 332
container_issue
container_start_page 323
container_title
container_volume 3109
creator Li, Guojun
Qi, Xingqin
Wang, Xiaoli
Zhu, Binhai
description The study of evolution based on rearrangements leads to a rearrangement distance problem, i.e., computing the minimum number of rearrangement events required to transform one geonome to another. In this paper we study the translocation distance problem, modeling the evolution of genomes by translocations. We present a linear-time algorithm for computing the translocation distance between signed genomes in this paper, improving a previous O(n3) bound by Hannenhalli in 1996.
doi_str_mv 10.1007/978-3-540-27801-6_24
format Book Chapter
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_15992830</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC3087579_30_333</sourcerecordid><originalsourceid>FETCH-LOGICAL-p272t-8f0a06b26e12721b81cf5e40859a7988b122c2b6983da103528006a741745643</originalsourceid><addsrcrecordid>eNotkE9PGzEQxV1aUFOab8DBlx5Nx__W9jEKlCJF6oEcerO8ize47NqLbVT129cJzGU07808jX4IXVG4pgDqu1GacCIFEKY0UNJZJj6gdZN5E09ad4ZWtKOUcC7MR_TlZDAu6O9PaAUcGDFK8Au0Ms1Xhkn4jNal_IFWlEkmxQo9bPAuRO8y2YfZ4810SDnUpxmPKeNtmpfXGuIB77OLZUqDqyFFfBNKdXHwuPf1r_cRP4RD9I_4zsc0-_IVnY9uKn793i_R_sftfvuT7H7d3W83O7IwxSrRIzjoetZ52mbaazqM0gvQ0jhltO4pYwPrO6P5o6PAJdMAnVOCKiE7wS_Rt7fYxZXBTWN7cQjFLjnMLv-zVBrDNIe2x972SrPiwWfbp_RcLAV7JG0bUsttY2dPVO2RdDvi7-E5vbz6Uq0_Xg0-1uym4ckt1ediOWgllWnd8lb_AbyKeiw</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC3087579_30_333</pqid></control><display><type>book_chapter</type><title>A Linear-Time Algorithm for Computing Translocation Distance between Signed Genomes</title><source>Springer Books</source><creator>Li, Guojun ; Qi, Xingqin ; Wang, Xiaoli ; Zhu, Binhai</creator><contributor>Sahinalp, Suleyman C ; Dogrusoz, Ugur ; Muthukrishnan, S ; Muthukrishnan, S. ; Sahinalp, Suleyman Cenk ; Dogrusoz, Ugur</contributor><creatorcontrib>Li, Guojun ; Qi, Xingqin ; Wang, Xiaoli ; Zhu, Binhai ; Sahinalp, Suleyman C ; Dogrusoz, Ugur ; Muthukrishnan, S ; Muthukrishnan, S. ; Sahinalp, Suleyman Cenk ; Dogrusoz, Ugur</creatorcontrib><description>The study of evolution based on rearrangements leads to a rearrangement distance problem, i.e., computing the minimum number of rearrangement events required to transform one geonome to another. In this paper we study the translocation distance problem, modeling the evolution of genomes by translocations. We present a linear-time algorithm for computing the translocation distance between signed genomes in this paper, improving a previous O(n3) bound by Hannenhalli in 1996.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 354022341X</identifier><identifier>ISBN: 9783540223412</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540278016</identifier><identifier>EISBN: 354027801X</identifier><identifier>DOI: 10.1007/978-3-540-27801-6_24</identifier><identifier>OCLC: 934979250</identifier><identifier>LCCallNum: Q337.5</identifier><language>eng</language><publisher>Germany: Springer Berlin / Heidelberg</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Computer science; control theory; systems ; Exact sciences and technology ; Nodal Gene ; Rearrangement Event ; Reciprocal Translocation ; Signed Genome ; Target Genome ; Theoretical computing</subject><ispartof>Combinatorial Pattern Matching, 2004, Vol.3109, p.323-332</ispartof><rights>Springer-Verlag Berlin Heidelberg 2004</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/3087579-l.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/978-3-540-27801-6_24$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/978-3-540-27801-6_24$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4048,4049,27923,38253,41440,42509</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15992830$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Sahinalp, Suleyman C</contributor><contributor>Dogrusoz, Ugur</contributor><contributor>Muthukrishnan, S</contributor><contributor>Muthukrishnan, S.</contributor><contributor>Sahinalp, Suleyman Cenk</contributor><contributor>Dogrusoz, Ugur</contributor><creatorcontrib>Li, Guojun</creatorcontrib><creatorcontrib>Qi, Xingqin</creatorcontrib><creatorcontrib>Wang, Xiaoli</creatorcontrib><creatorcontrib>Zhu, Binhai</creatorcontrib><title>A Linear-Time Algorithm for Computing Translocation Distance between Signed Genomes</title><title>Combinatorial Pattern Matching</title><description>The study of evolution based on rearrangements leads to a rearrangement distance problem, i.e., computing the minimum number of rearrangement events required to transform one geonome to another. In this paper we study the translocation distance problem, modeling the evolution of genomes by translocations. We present a linear-time algorithm for computing the translocation distance between signed genomes in this paper, improving a previous O(n3) bound by Hannenhalli in 1996.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Nodal Gene</subject><subject>Rearrangement Event</subject><subject>Reciprocal Translocation</subject><subject>Signed Genome</subject><subject>Target Genome</subject><subject>Theoretical computing</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>354022341X</isbn><isbn>9783540223412</isbn><isbn>9783540278016</isbn><isbn>354027801X</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2004</creationdate><recordtype>book_chapter</recordtype><recordid>eNotkE9PGzEQxV1aUFOab8DBlx5Nx__W9jEKlCJF6oEcerO8ize47NqLbVT129cJzGU07808jX4IXVG4pgDqu1GacCIFEKY0UNJZJj6gdZN5E09ad4ZWtKOUcC7MR_TlZDAu6O9PaAUcGDFK8Au0Ms1Xhkn4jNal_IFWlEkmxQo9bPAuRO8y2YfZ4810SDnUpxmPKeNtmpfXGuIB77OLZUqDqyFFfBNKdXHwuPf1r_cRP4RD9I_4zsc0-_IVnY9uKn793i_R_sftfvuT7H7d3W83O7IwxSrRIzjoetZ52mbaazqM0gvQ0jhltO4pYwPrO6P5o6PAJdMAnVOCKiE7wS_Rt7fYxZXBTWN7cQjFLjnMLv-zVBrDNIe2x972SrPiwWfbp_RcLAV7JG0bUsttY2dPVO2RdDvi7-E5vbz6Uq0_Xg0-1uym4ckt1ediOWgllWnd8lb_AbyKeiw</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Li, Guojun</creator><creator>Qi, Xingqin</creator><creator>Wang, Xiaoli</creator><creator>Zhu, Binhai</creator><general>Springer Berlin / Heidelberg</general><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>FFUUA</scope><scope>IQODW</scope></search><sort><creationdate>2004</creationdate><title>A Linear-Time Algorithm for Computing Translocation Distance between Signed Genomes</title><author>Li, Guojun ; Qi, Xingqin ; Wang, Xiaoli ; Zhu, Binhai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p272t-8f0a06b26e12721b81cf5e40859a7988b122c2b6983da103528006a741745643</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Nodal Gene</topic><topic>Rearrangement Event</topic><topic>Reciprocal Translocation</topic><topic>Signed Genome</topic><topic>Target Genome</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Guojun</creatorcontrib><creatorcontrib>Qi, Xingqin</creatorcontrib><creatorcontrib>Wang, Xiaoli</creatorcontrib><creatorcontrib>Zhu, Binhai</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Guojun</au><au>Qi, Xingqin</au><au>Wang, Xiaoli</au><au>Zhu, Binhai</au><au>Sahinalp, Suleyman C</au><au>Dogrusoz, Ugur</au><au>Muthukrishnan, S</au><au>Muthukrishnan, S.</au><au>Sahinalp, Suleyman Cenk</au><au>Dogrusoz, Ugur</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>A Linear-Time Algorithm for Computing Translocation Distance between Signed Genomes</atitle><btitle>Combinatorial Pattern Matching</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2004</date><risdate>2004</risdate><volume>3109</volume><spage>323</spage><epage>332</epage><pages>323-332</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>354022341X</isbn><isbn>9783540223412</isbn><eisbn>9783540278016</eisbn><eisbn>354027801X</eisbn><abstract>The study of evolution based on rearrangements leads to a rearrangement distance problem, i.e., computing the minimum number of rearrangement events required to transform one geonome to another. In this paper we study the translocation distance problem, modeling the evolution of genomes by translocations. We present a linear-time algorithm for computing the translocation distance between signed genomes in this paper, improving a previous O(n3) bound by Hannenhalli in 1996.</abstract><cop>Germany</cop><pub>Springer Berlin / Heidelberg</pub><doi>10.1007/978-3-540-27801-6_24</doi><oclcid>934979250</oclcid><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Combinatorial Pattern Matching, 2004, Vol.3109, p.323-332
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_15992830
source Springer Books
subjects Algorithmics. Computability. Computer arithmetics
Applied sciences
Computer science
control theory
systems
Exact sciences and technology
Nodal Gene
Rearrangement Event
Reciprocal Translocation
Signed Genome
Target Genome
Theoretical computing
title A Linear-Time Algorithm for Computing Translocation Distance between Signed Genomes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T18%3A06%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=A%20Linear-Time%20Algorithm%20for%20Computing%20Translocation%20Distance%20between%20Signed%20Genomes&rft.btitle=Combinatorial%20Pattern%20Matching&rft.au=Li,%20Guojun&rft.date=2004&rft.volume=3109&rft.spage=323&rft.epage=332&rft.pages=323-332&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=354022341X&rft.isbn_list=9783540223412&rft_id=info:doi/10.1007/978-3-540-27801-6_24&rft_dat=%3Cproquest_pasca%3EEBC3087579_30_333%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540278016&rft.eisbn_list=354027801X&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC3087579_30_333&rft_id=info:pmid/&rfr_iscdi=true