Estimation of subpixel target size for remotely sensed imagery

One of the challenges in remote sensing image processing is subpixel detection where the target size is smaller than the ground sampling distance, therefore, embedded in a single pixel. Under such a circumstance, these targets can be only detected spectrally at the subpixel level, not spatially as o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2004-06, Vol.42 (6), p.1309-1320
Hauptverfasser: Chein-I Chang, Hsuan Ren, Chein-Chi Chang, D'Amico, F., Jensen, J.O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1320
container_issue 6
container_start_page 1309
container_title IEEE transactions on geoscience and remote sensing
container_volume 42
creator Chein-I Chang
Hsuan Ren
Chein-Chi Chang
D'Amico, F.
Jensen, J.O.
description One of the challenges in remote sensing image processing is subpixel detection where the target size is smaller than the ground sampling distance, therefore, embedded in a single pixel. Under such a circumstance, these targets can be only detected spectrally at the subpixel level, not spatially as ordinarily conducted by classical image processing techniques. This paper investigates a more challenging issue than subpixel detection, which is the estimation of target size at the subpixel level. More specifically, when a subpixel target is detected, we would like to know "what is the size of this particular target within the pixel?". The proposed approach is to estimate the abundance fraction of a subpixel target present in a pixel, then find what portion it contributes to the pixel that can be used to determine the size of the subpixel target by multiplying the ground sampling distance. In order to make our idea work, the subpixel target abundance fraction must be accurately estimated to truly reflect the portion of a subpixel target occupied within a pixel. So, a fully constrained linear unmixing method is required to reliably estimate the abundance fractions of a subpixel target for its size estimation. In this paper, a recently developed fully constrained least squares linear unmixing is used for this purpose. Experiments are conducted to demonstrate the utility of the proposed method in comparison with an unconstrained linear unmixing method, unconstrained least squares method, two partially constrained least square linear unmixing methods, sum-to-one constrained least squares, and nonnegativity constrained least squares.
doi_str_mv 10.1109/TGRS.2004.826559
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_15866924</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1304898</ieee_id><sourcerecordid>29044127</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-937ab7fa0351fe8d20709d1edb4b1bcfc7f6e4636514482c0af5fb6a5668cfed3</originalsourceid><addsrcrecordid>eNqFkMFLwzAUh4MoOKd3wUsR9Nb5kiZpchFkzCkMBJ3nkKYvo6NrZ9KB86-3Y4OBF0_v8L7fj_c-Qq4pjCgF_TCfvn-MGAAfKSaF0CdkQIVQKUjOT8kAqJYpU5qdk4sYlwCUC5oPyOMkdtXKdlXbJK1P4qZYV99YJ50NC-ySWP1g4tuQBFy1HdbbJGITsUz6zALD9pKceVtHvDrMIfl8nszHL-nsbfo6fpqljnPZpTrLbZF7C5mgHlXJIAddUiwLXtDCeZd7iVxmUlDOFXNgvfCFtEJK5TyW2ZDc73vXof3aYOzMqooO69o22G6iYRo4pyz_H1RSSsFpD97-AZftJjT9E0YpDizToHsI9pALbYwBvVmH_vOwNRTMTrvZaTc77WavvY_cHXptdLb2wTauisec6A_QjPfczZ6rEPG4zoArrbJfrf2LAw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884023909</pqid></control><display><type>article</type><title>Estimation of subpixel target size for remotely sensed imagery</title><source>IEEE Electronic Library (IEL)</source><creator>Chein-I Chang ; Hsuan Ren ; Chein-Chi Chang ; D'Amico, F. ; Jensen, J.O.</creator><creatorcontrib>Chein-I Chang ; Hsuan Ren ; Chein-Chi Chang ; D'Amico, F. ; Jensen, J.O.</creatorcontrib><description>One of the challenges in remote sensing image processing is subpixel detection where the target size is smaller than the ground sampling distance, therefore, embedded in a single pixel. Under such a circumstance, these targets can be only detected spectrally at the subpixel level, not spatially as ordinarily conducted by classical image processing techniques. This paper investigates a more challenging issue than subpixel detection, which is the estimation of target size at the subpixel level. More specifically, when a subpixel target is detected, we would like to know "what is the size of this particular target within the pixel?". The proposed approach is to estimate the abundance fraction of a subpixel target present in a pixel, then find what portion it contributes to the pixel that can be used to determine the size of the subpixel target by multiplying the ground sampling distance. In order to make our idea work, the subpixel target abundance fraction must be accurately estimated to truly reflect the portion of a subpixel target occupied within a pixel. So, a fully constrained linear unmixing method is required to reliably estimate the abundance fractions of a subpixel target for its size estimation. In this paper, a recently developed fully constrained least squares linear unmixing is used for this purpose. Experiments are conducted to demonstrate the utility of the proposed method in comparison with an unconstrained linear unmixing method, unconstrained least squares method, two partially constrained least square linear unmixing methods, sum-to-one constrained least squares, and nonnegativity constrained least squares.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2004.826559</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied geophysics ; Chemicals ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Hyperspectral imaging ; Hyperspectral sensors ; Image processing ; Image sampling ; Internal geophysics ; Least squares methods ; Pixel ; Remote sensing ; Sampling methods ; Studies ; Vectors</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2004-06, Vol.42 (6), p.1309-1320</ispartof><rights>2004 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-937ab7fa0351fe8d20709d1edb4b1bcfc7f6e4636514482c0af5fb6a5668cfed3</citedby><cites>FETCH-LOGICAL-c446t-937ab7fa0351fe8d20709d1edb4b1bcfc7f6e4636514482c0af5fb6a5668cfed3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1304898$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1304898$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15866924$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Chein-I Chang</creatorcontrib><creatorcontrib>Hsuan Ren</creatorcontrib><creatorcontrib>Chein-Chi Chang</creatorcontrib><creatorcontrib>D'Amico, F.</creatorcontrib><creatorcontrib>Jensen, J.O.</creatorcontrib><title>Estimation of subpixel target size for remotely sensed imagery</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>One of the challenges in remote sensing image processing is subpixel detection where the target size is smaller than the ground sampling distance, therefore, embedded in a single pixel. Under such a circumstance, these targets can be only detected spectrally at the subpixel level, not spatially as ordinarily conducted by classical image processing techniques. This paper investigates a more challenging issue than subpixel detection, which is the estimation of target size at the subpixel level. More specifically, when a subpixel target is detected, we would like to know "what is the size of this particular target within the pixel?". The proposed approach is to estimate the abundance fraction of a subpixel target present in a pixel, then find what portion it contributes to the pixel that can be used to determine the size of the subpixel target by multiplying the ground sampling distance. In order to make our idea work, the subpixel target abundance fraction must be accurately estimated to truly reflect the portion of a subpixel target occupied within a pixel. So, a fully constrained linear unmixing method is required to reliably estimate the abundance fractions of a subpixel target for its size estimation. In this paper, a recently developed fully constrained least squares linear unmixing is used for this purpose. Experiments are conducted to demonstrate the utility of the proposed method in comparison with an unconstrained linear unmixing method, unconstrained least squares method, two partially constrained least square linear unmixing methods, sum-to-one constrained least squares, and nonnegativity constrained least squares.</description><subject>Applied geophysics</subject><subject>Chemicals</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Hyperspectral imaging</subject><subject>Hyperspectral sensors</subject><subject>Image processing</subject><subject>Image sampling</subject><subject>Internal geophysics</subject><subject>Least squares methods</subject><subject>Pixel</subject><subject>Remote sensing</subject><subject>Sampling methods</subject><subject>Studies</subject><subject>Vectors</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkMFLwzAUh4MoOKd3wUsR9Nb5kiZpchFkzCkMBJ3nkKYvo6NrZ9KB86-3Y4OBF0_v8L7fj_c-Qq4pjCgF_TCfvn-MGAAfKSaF0CdkQIVQKUjOT8kAqJYpU5qdk4sYlwCUC5oPyOMkdtXKdlXbJK1P4qZYV99YJ50NC-ySWP1g4tuQBFy1HdbbJGITsUz6zALD9pKceVtHvDrMIfl8nszHL-nsbfo6fpqljnPZpTrLbZF7C5mgHlXJIAddUiwLXtDCeZd7iVxmUlDOFXNgvfCFtEJK5TyW2ZDc73vXof3aYOzMqooO69o22G6iYRo4pyz_H1RSSsFpD97-AZftJjT9E0YpDizToHsI9pALbYwBvVmH_vOwNRTMTrvZaTc77WavvY_cHXptdLb2wTauisec6A_QjPfczZ6rEPG4zoArrbJfrf2LAw</recordid><startdate>20040601</startdate><enddate>20040601</enddate><creator>Chein-I Chang</creator><creator>Hsuan Ren</creator><creator>Chein-Chi Chang</creator><creator>D'Amico, F.</creator><creator>Jensen, J.O.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope></search><sort><creationdate>20040601</creationdate><title>Estimation of subpixel target size for remotely sensed imagery</title><author>Chein-I Chang ; Hsuan Ren ; Chein-Chi Chang ; D'Amico, F. ; Jensen, J.O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-937ab7fa0351fe8d20709d1edb4b1bcfc7f6e4636514482c0af5fb6a5668cfed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applied geophysics</topic><topic>Chemicals</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Hyperspectral imaging</topic><topic>Hyperspectral sensors</topic><topic>Image processing</topic><topic>Image sampling</topic><topic>Internal geophysics</topic><topic>Least squares methods</topic><topic>Pixel</topic><topic>Remote sensing</topic><topic>Sampling methods</topic><topic>Studies</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chein-I Chang</creatorcontrib><creatorcontrib>Hsuan Ren</creatorcontrib><creatorcontrib>Chein-Chi Chang</creatorcontrib><creatorcontrib>D'Amico, F.</creatorcontrib><creatorcontrib>Jensen, J.O.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chein-I Chang</au><au>Hsuan Ren</au><au>Chein-Chi Chang</au><au>D'Amico, F.</au><au>Jensen, J.O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimation of subpixel target size for remotely sensed imagery</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2004-06-01</date><risdate>2004</risdate><volume>42</volume><issue>6</issue><spage>1309</spage><epage>1320</epage><pages>1309-1320</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>One of the challenges in remote sensing image processing is subpixel detection where the target size is smaller than the ground sampling distance, therefore, embedded in a single pixel. Under such a circumstance, these targets can be only detected spectrally at the subpixel level, not spatially as ordinarily conducted by classical image processing techniques. This paper investigates a more challenging issue than subpixel detection, which is the estimation of target size at the subpixel level. More specifically, when a subpixel target is detected, we would like to know "what is the size of this particular target within the pixel?". The proposed approach is to estimate the abundance fraction of a subpixel target present in a pixel, then find what portion it contributes to the pixel that can be used to determine the size of the subpixel target by multiplying the ground sampling distance. In order to make our idea work, the subpixel target abundance fraction must be accurately estimated to truly reflect the portion of a subpixel target occupied within a pixel. So, a fully constrained linear unmixing method is required to reliably estimate the abundance fractions of a subpixel target for its size estimation. In this paper, a recently developed fully constrained least squares linear unmixing is used for this purpose. Experiments are conducted to demonstrate the utility of the proposed method in comparison with an unconstrained linear unmixing method, unconstrained least squares method, two partially constrained least square linear unmixing methods, sum-to-one constrained least squares, and nonnegativity constrained least squares.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TGRS.2004.826559</doi><tpages>12</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2004-06, Vol.42 (6), p.1309-1320
issn 0196-2892
1558-0644
language eng
recordid cdi_pascalfrancis_primary_15866924
source IEEE Electronic Library (IEL)
subjects Applied geophysics
Chemicals
Earth sciences
Earth, ocean, space
Exact sciences and technology
Hyperspectral imaging
Hyperspectral sensors
Image processing
Image sampling
Internal geophysics
Least squares methods
Pixel
Remote sensing
Sampling methods
Studies
Vectors
title Estimation of subpixel target size for remotely sensed imagery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T22%3A20%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimation%20of%20subpixel%20target%20size%20for%20remotely%20sensed%20imagery&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Chein-I%20Chang&rft.date=2004-06-01&rft.volume=42&rft.issue=6&rft.spage=1309&rft.epage=1320&rft.pages=1309-1320&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2004.826559&rft_dat=%3Cproquest_RIE%3E29044127%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884023909&rft_id=info:pmid/&rft_ieee_id=1304898&rfr_iscdi=true