Modified Version of Roulette Selection for Evolution Algorithms – The Fan Selection

In this paper modified version of roulette selection for evolution algorithms – the fan selection, is presented. This method depends on increase of survive probability of better individuals at the expense of worse individuals. Test functions chosen from literature are used for determination of quali...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: SLOWIK, Adam, BIALKO, Michal
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 479
container_issue
container_start_page 474
container_title
container_volume 3070
creator SLOWIK, Adam
BIALKO, Michal
description In this paper modified version of roulette selection for evolution algorithms – the fan selection, is presented. This method depends on increase of survive probability of better individuals at the expense of worse individuals. Test functions chosen from literature are used for determination of quality of proposed method. Results obtained for fan selection are compared with results obtained using roulette selection and elitist selection.
doi_str_mv 10.1007/978-3-540-24844-6_70
format Book Chapter
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_15852378</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC3088629_76_498</sourcerecordid><originalsourceid>FETCH-LOGICAL-p270t-ddb5cb41e73830f47b27455c83e952c34e5934c65a43138b8f9885991f3d9d483</originalsourceid><addsrcrecordid>eNpFkE1OwzAQhc2vqEpvwCIblgbbY8f2EiH-JBASULaW4zg0EOJip0jsuAM35CQ4BYnZjObNe6PRh9ABJUeUEHmspcKABSeYccU5Lo0kG2iWZcjiWis30YSWlGIArrf-d4wy4NtoQoAwrCWHXTTR2aKI5noPzVJ6JrkoyVmYoPlNqNum9XXx6GNqQ1-EprgLq84Pgy_ufefdMKpNiMXZe-hW6-mkewqxHRavqfj-_CoeFr44t_2_fR_tNLZLfvbXp2h-fvZweomvby-uTk-u8ZJJMuC6roSrOPUSFJCGy4pJLoRT4LVgDrgX-XVXCsuBgqpUo5USWtMGal1zBVN0-Ht3aZOzXRNt79pklrF9tfHDUKEEAzn62K8v5VX_5KOpQnhJhhIz8jYZngGT8Zk1WzPyziH4Ox7D28qnwfgx5Xw_RNu5hV0OGZkBolTJtJGlyZThB8VTfW4</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC3088629_76_498</pqid></control><display><type>book_chapter</type><title>Modified Version of Roulette Selection for Evolution Algorithms – The Fan Selection</title><source>Springer Books</source><creator>SLOWIK, Adam ; BIALKO, Michal</creator><contributor>Tadeusiewicz, Ryszard ; Siekmann, Jörg ; Rutkowski, Leszek ; Zadeh, Lotfi A</contributor><creatorcontrib>SLOWIK, Adam ; BIALKO, Michal ; Tadeusiewicz, Ryszard ; Siekmann, Jörg ; Rutkowski, Leszek ; Zadeh, Lotfi A</creatorcontrib><description>In this paper modified version of roulette selection for evolution algorithms – the fan selection, is presented. This method depends on increase of survive probability of better individuals at the expense of worse individuals. Test functions chosen from literature are used for determination of quality of proposed method. Results obtained for fan selection are compared with results obtained using roulette selection and elitist selection.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540221234</identifier><identifier>ISBN: 3540221239</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540248446</identifier><identifier>EISBN: 3540248447</identifier><identifier>DOI: 10.1007/978-3-540-24844-6_70</identifier><identifier>OCLC: 934980949</identifier><identifier>LCCallNum: Q334-342</identifier><language>eng</language><publisher>Germany: Springer Berlin / Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Evolutionary Algorithm ; Exact sciences and technology ; Function Minimum ; Genetic Algorithm ; Good Individual ; Learning and adaptive systems ; Selection Method</subject><ispartof>Artificial Intelligence and Soft Computing - ICAISC 2004, 2004, Vol.3070, p.474-479</ispartof><rights>Springer-Verlag Berlin Heidelberg 2004</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/3088629-l.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/978-3-540-24844-6_70$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/978-3-540-24844-6_70$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4036,4037,27902,38232,41418,42487</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15852378$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Tadeusiewicz, Ryszard</contributor><contributor>Siekmann, Jörg</contributor><contributor>Rutkowski, Leszek</contributor><contributor>Zadeh, Lotfi A</contributor><creatorcontrib>SLOWIK, Adam</creatorcontrib><creatorcontrib>BIALKO, Michal</creatorcontrib><title>Modified Version of Roulette Selection for Evolution Algorithms – The Fan Selection</title><title>Artificial Intelligence and Soft Computing - ICAISC 2004</title><description>In this paper modified version of roulette selection for evolution algorithms – the fan selection, is presented. This method depends on increase of survive probability of better individuals at the expense of worse individuals. Test functions chosen from literature are used for determination of quality of proposed method. Results obtained for fan selection are compared with results obtained using roulette selection and elitist selection.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Evolutionary Algorithm</subject><subject>Exact sciences and technology</subject><subject>Function Minimum</subject><subject>Genetic Algorithm</subject><subject>Good Individual</subject><subject>Learning and adaptive systems</subject><subject>Selection Method</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540221234</isbn><isbn>3540221239</isbn><isbn>9783540248446</isbn><isbn>3540248447</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2004</creationdate><recordtype>book_chapter</recordtype><recordid>eNpFkE1OwzAQhc2vqEpvwCIblgbbY8f2EiH-JBASULaW4zg0EOJip0jsuAM35CQ4BYnZjObNe6PRh9ABJUeUEHmspcKABSeYccU5Lo0kG2iWZcjiWis30YSWlGIArrf-d4wy4NtoQoAwrCWHXTTR2aKI5noPzVJ6JrkoyVmYoPlNqNum9XXx6GNqQ1-EprgLq84Pgy_ufefdMKpNiMXZe-hW6-mkewqxHRavqfj-_CoeFr44t_2_fR_tNLZLfvbXp2h-fvZweomvby-uTk-u8ZJJMuC6roSrOPUSFJCGy4pJLoRT4LVgDrgX-XVXCsuBgqpUo5USWtMGal1zBVN0-Ht3aZOzXRNt79pklrF9tfHDUKEEAzn62K8v5VX_5KOpQnhJhhIz8jYZngGT8Zk1WzPyziH4Ox7D28qnwfgx5Xw_RNu5hV0OGZkBolTJtJGlyZThB8VTfW4</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>SLOWIK, Adam</creator><creator>BIALKO, Michal</creator><general>Springer Berlin / Heidelberg</general><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>FFUUA</scope><scope>IQODW</scope></search><sort><creationdate>2004</creationdate><title>Modified Version of Roulette Selection for Evolution Algorithms – The Fan Selection</title><author>SLOWIK, Adam ; BIALKO, Michal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p270t-ddb5cb41e73830f47b27455c83e952c34e5934c65a43138b8f9885991f3d9d483</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Evolutionary Algorithm</topic><topic>Exact sciences and technology</topic><topic>Function Minimum</topic><topic>Genetic Algorithm</topic><topic>Good Individual</topic><topic>Learning and adaptive systems</topic><topic>Selection Method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>SLOWIK, Adam</creatorcontrib><creatorcontrib>BIALKO, Michal</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SLOWIK, Adam</au><au>BIALKO, Michal</au><au>Tadeusiewicz, Ryszard</au><au>Siekmann, Jörg</au><au>Rutkowski, Leszek</au><au>Zadeh, Lotfi A</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Modified Version of Roulette Selection for Evolution Algorithms – The Fan Selection</atitle><btitle>Artificial Intelligence and Soft Computing - ICAISC 2004</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2004</date><risdate>2004</risdate><volume>3070</volume><spage>474</spage><epage>479</epage><pages>474-479</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540221234</isbn><isbn>3540221239</isbn><eisbn>9783540248446</eisbn><eisbn>3540248447</eisbn><abstract>In this paper modified version of roulette selection for evolution algorithms – the fan selection, is presented. This method depends on increase of survive probability of better individuals at the expense of worse individuals. Test functions chosen from literature are used for determination of quality of proposed method. Results obtained for fan selection are compared with results obtained using roulette selection and elitist selection.</abstract><cop>Germany</cop><pub>Springer Berlin / Heidelberg</pub><doi>10.1007/978-3-540-24844-6_70</doi><oclcid>934980949</oclcid><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Artificial Intelligence and Soft Computing - ICAISC 2004, 2004, Vol.3070, p.474-479
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_15852378
source Springer Books
subjects Applied sciences
Artificial intelligence
Computer science
control theory
systems
Evolutionary Algorithm
Exact sciences and technology
Function Minimum
Genetic Algorithm
Good Individual
Learning and adaptive systems
Selection Method
title Modified Version of Roulette Selection for Evolution Algorithms – The Fan Selection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T19%3A35%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Modified%20Version%20of%20Roulette%20Selection%20for%20Evolution%20Algorithms%20%E2%80%93%20The%20Fan%20Selection&rft.btitle=Artificial%20Intelligence%20and%20Soft%20Computing%20-%20ICAISC%202004&rft.au=SLOWIK,%20Adam&rft.date=2004&rft.volume=3070&rft.spage=474&rft.epage=479&rft.pages=474-479&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540221234&rft.isbn_list=3540221239&rft_id=info:doi/10.1007/978-3-540-24844-6_70&rft_dat=%3Cproquest_pasca%3EEBC3088629_76_498%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540248446&rft.eisbn_list=3540248447&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC3088629_76_498&rft_id=info:pmid/&rfr_iscdi=true