Modified Version of Roulette Selection for Evolution Algorithms – The Fan Selection
In this paper modified version of roulette selection for evolution algorithms – the fan selection, is presented. This method depends on increase of survive probability of better individuals at the expense of worse individuals. Test functions chosen from literature are used for determination of quali...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 479 |
---|---|
container_issue | |
container_start_page | 474 |
container_title | |
container_volume | 3070 |
creator | SLOWIK, Adam BIALKO, Michal |
description | In this paper modified version of roulette selection for evolution algorithms – the fan selection, is presented. This method depends on increase of survive probability of better individuals at the expense of worse individuals. Test functions chosen from literature are used for determination of quality of proposed method. Results obtained for fan selection are compared with results obtained using roulette selection and elitist selection. |
doi_str_mv | 10.1007/978-3-540-24844-6_70 |
format | Book Chapter |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_15852378</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC3088629_76_498</sourcerecordid><originalsourceid>FETCH-LOGICAL-p270t-ddb5cb41e73830f47b27455c83e952c34e5934c65a43138b8f9885991f3d9d483</originalsourceid><addsrcrecordid>eNpFkE1OwzAQhc2vqEpvwCIblgbbY8f2EiH-JBASULaW4zg0EOJip0jsuAM35CQ4BYnZjObNe6PRh9ABJUeUEHmspcKABSeYccU5Lo0kG2iWZcjiWis30YSWlGIArrf-d4wy4NtoQoAwrCWHXTTR2aKI5noPzVJ6JrkoyVmYoPlNqNum9XXx6GNqQ1-EprgLq84Pgy_ufefdMKpNiMXZe-hW6-mkewqxHRavqfj-_CoeFr44t_2_fR_tNLZLfvbXp2h-fvZweomvby-uTk-u8ZJJMuC6roSrOPUSFJCGy4pJLoRT4LVgDrgX-XVXCsuBgqpUo5USWtMGal1zBVN0-Ht3aZOzXRNt79pklrF9tfHDUKEEAzn62K8v5VX_5KOpQnhJhhIz8jYZngGT8Zk1WzPyziH4Ox7D28qnwfgx5Xw_RNu5hV0OGZkBolTJtJGlyZThB8VTfW4</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC3088629_76_498</pqid></control><display><type>book_chapter</type><title>Modified Version of Roulette Selection for Evolution Algorithms – The Fan Selection</title><source>Springer Books</source><creator>SLOWIK, Adam ; BIALKO, Michal</creator><contributor>Tadeusiewicz, Ryszard ; Siekmann, Jörg ; Rutkowski, Leszek ; Zadeh, Lotfi A</contributor><creatorcontrib>SLOWIK, Adam ; BIALKO, Michal ; Tadeusiewicz, Ryszard ; Siekmann, Jörg ; Rutkowski, Leszek ; Zadeh, Lotfi A</creatorcontrib><description>In this paper modified version of roulette selection for evolution algorithms – the fan selection, is presented. This method depends on increase of survive probability of better individuals at the expense of worse individuals. Test functions chosen from literature are used for determination of quality of proposed method. Results obtained for fan selection are compared with results obtained using roulette selection and elitist selection.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540221234</identifier><identifier>ISBN: 3540221239</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540248446</identifier><identifier>EISBN: 3540248447</identifier><identifier>DOI: 10.1007/978-3-540-24844-6_70</identifier><identifier>OCLC: 934980949</identifier><identifier>LCCallNum: Q334-342</identifier><language>eng</language><publisher>Germany: Springer Berlin / Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Evolutionary Algorithm ; Exact sciences and technology ; Function Minimum ; Genetic Algorithm ; Good Individual ; Learning and adaptive systems ; Selection Method</subject><ispartof>Artificial Intelligence and Soft Computing - ICAISC 2004, 2004, Vol.3070, p.474-479</ispartof><rights>Springer-Verlag Berlin Heidelberg 2004</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/3088629-l.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/978-3-540-24844-6_70$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/978-3-540-24844-6_70$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4036,4037,27902,38232,41418,42487</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15852378$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Tadeusiewicz, Ryszard</contributor><contributor>Siekmann, Jörg</contributor><contributor>Rutkowski, Leszek</contributor><contributor>Zadeh, Lotfi A</contributor><creatorcontrib>SLOWIK, Adam</creatorcontrib><creatorcontrib>BIALKO, Michal</creatorcontrib><title>Modified Version of Roulette Selection for Evolution Algorithms – The Fan Selection</title><title>Artificial Intelligence and Soft Computing - ICAISC 2004</title><description>In this paper modified version of roulette selection for evolution algorithms – the fan selection, is presented. This method depends on increase of survive probability of better individuals at the expense of worse individuals. Test functions chosen from literature are used for determination of quality of proposed method. Results obtained for fan selection are compared with results obtained using roulette selection and elitist selection.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Evolutionary Algorithm</subject><subject>Exact sciences and technology</subject><subject>Function Minimum</subject><subject>Genetic Algorithm</subject><subject>Good Individual</subject><subject>Learning and adaptive systems</subject><subject>Selection Method</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540221234</isbn><isbn>3540221239</isbn><isbn>9783540248446</isbn><isbn>3540248447</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2004</creationdate><recordtype>book_chapter</recordtype><recordid>eNpFkE1OwzAQhc2vqEpvwCIblgbbY8f2EiH-JBASULaW4zg0EOJip0jsuAM35CQ4BYnZjObNe6PRh9ABJUeUEHmspcKABSeYccU5Lo0kG2iWZcjiWis30YSWlGIArrf-d4wy4NtoQoAwrCWHXTTR2aKI5noPzVJ6JrkoyVmYoPlNqNum9XXx6GNqQ1-EprgLq84Pgy_ufefdMKpNiMXZe-hW6-mkewqxHRavqfj-_CoeFr44t_2_fR_tNLZLfvbXp2h-fvZweomvby-uTk-u8ZJJMuC6roSrOPUSFJCGy4pJLoRT4LVgDrgX-XVXCsuBgqpUo5USWtMGal1zBVN0-Ht3aZOzXRNt79pklrF9tfHDUKEEAzn62K8v5VX_5KOpQnhJhhIz8jYZngGT8Zk1WzPyziH4Ox7D28qnwfgx5Xw_RNu5hV0OGZkBolTJtJGlyZThB8VTfW4</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>SLOWIK, Adam</creator><creator>BIALKO, Michal</creator><general>Springer Berlin / Heidelberg</general><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>FFUUA</scope><scope>IQODW</scope></search><sort><creationdate>2004</creationdate><title>Modified Version of Roulette Selection for Evolution Algorithms – The Fan Selection</title><author>SLOWIK, Adam ; BIALKO, Michal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p270t-ddb5cb41e73830f47b27455c83e952c34e5934c65a43138b8f9885991f3d9d483</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Evolutionary Algorithm</topic><topic>Exact sciences and technology</topic><topic>Function Minimum</topic><topic>Genetic Algorithm</topic><topic>Good Individual</topic><topic>Learning and adaptive systems</topic><topic>Selection Method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>SLOWIK, Adam</creatorcontrib><creatorcontrib>BIALKO, Michal</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SLOWIK, Adam</au><au>BIALKO, Michal</au><au>Tadeusiewicz, Ryszard</au><au>Siekmann, Jörg</au><au>Rutkowski, Leszek</au><au>Zadeh, Lotfi A</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Modified Version of Roulette Selection for Evolution Algorithms – The Fan Selection</atitle><btitle>Artificial Intelligence and Soft Computing - ICAISC 2004</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2004</date><risdate>2004</risdate><volume>3070</volume><spage>474</spage><epage>479</epage><pages>474-479</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540221234</isbn><isbn>3540221239</isbn><eisbn>9783540248446</eisbn><eisbn>3540248447</eisbn><abstract>In this paper modified version of roulette selection for evolution algorithms – the fan selection, is presented. This method depends on increase of survive probability of better individuals at the expense of worse individuals. Test functions chosen from literature are used for determination of quality of proposed method. Results obtained for fan selection are compared with results obtained using roulette selection and elitist selection.</abstract><cop>Germany</cop><pub>Springer Berlin / Heidelberg</pub><doi>10.1007/978-3-540-24844-6_70</doi><oclcid>934980949</oclcid><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Artificial Intelligence and Soft Computing - ICAISC 2004, 2004, Vol.3070, p.474-479 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_15852378 |
source | Springer Books |
subjects | Applied sciences Artificial intelligence Computer science control theory systems Evolutionary Algorithm Exact sciences and technology Function Minimum Genetic Algorithm Good Individual Learning and adaptive systems Selection Method |
title | Modified Version of Roulette Selection for Evolution Algorithms – The Fan Selection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T19%3A35%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Modified%20Version%20of%20Roulette%20Selection%20for%20Evolution%20Algorithms%20%E2%80%93%20The%20Fan%20Selection&rft.btitle=Artificial%20Intelligence%20and%20Soft%20Computing%20-%20ICAISC%202004&rft.au=SLOWIK,%20Adam&rft.date=2004&rft.volume=3070&rft.spage=474&rft.epage=479&rft.pages=474-479&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540221234&rft.isbn_list=3540221239&rft_id=info:doi/10.1007/978-3-540-24844-6_70&rft_dat=%3Cproquest_pasca%3EEBC3088629_76_498%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540248446&rft.eisbn_list=3540248447&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC3088629_76_498&rft_id=info:pmid/&rfr_iscdi=true |