Semi-mechanistic Models for State-Estimation – Soft Sensor for Polymer Melt Index Prediction

Nonlinear state estimation is a useful approach to the monitoring of industrial (polymerization) processes. This paper investigates how this approach can be followed to the development of a soft sensor of the product quality (melt index). The bottleneck of the successful application of advanced stat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Feil, Balazs, Abonyi, Janos, Pach, Peter, Nemeth, Sandor, Arva, Peter, Nemeth, Miklos, Nagy, Gabor
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1117
container_issue
container_start_page 1111
container_title
container_volume 3070
creator Feil, Balazs
Abonyi, Janos
Pach, Peter
Nemeth, Sandor
Arva, Peter
Nemeth, Miklos
Nagy, Gabor
description Nonlinear state estimation is a useful approach to the monitoring of industrial (polymerization) processes. This paper investigates how this approach can be followed to the development of a soft sensor of the product quality (melt index). The bottleneck of the successful application of advanced state estimation algorithms is the identification of models that can accurately describe the process. This paper presents a semi-mechanistic modeling approach where neural networks describe the unknown phenomena of the system that cannot be formulated by prior knowledge based differential equations. Since in the presented semi-mechanistic model structure the neural network is a part of a nonlinear algebraic-differential equation set, there are no available direct input-output data to train the weights of the network. To handle this problem in this paper a simple, yet practically useful spline-smoothing based technique has been used. The results show that the developed semi-mechanistic model can be efficiently used for on-line state estimation.
doi_str_mv 10.1007/978-3-540-24844-6_174
format Book Chapter
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_15852342</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC3088629_180_1135</sourcerecordid><originalsourceid>FETCH-LOGICAL-p273t-b16803f2b62ef3679ea05b069ae72df7169d924e597db5183b773d837529d2753</originalsourceid><addsrcrecordid>eNpFkE1OHDEQhU2AKCOYIyB5k6WD7fLvEiFIkEAgTbKN5e6uhoae7ontSLDLHXLDnCSeAYnalPTqvafSR8iJ4F8E5_bUW8eAacWZVE4pZoKwao8sqw5V3YnmA1kIIwQDUH7__SaFBHVAFhy4ZN4q-EgWvloc98p_IsucH3kdwWsWFuTnCtcDW2P7EKchl6GlN3OHY6b9nOiqxILsosrrWIZ5ov_-_KWruS90hVOuhq3pbh5f1pjoDY6FXk0dPtO7hN3QbhPH5LCPY8bl2z4iPy4vvp9_Y9e3X6_Oz67ZRloorBHGcehlYyT2YKzHyHXDjY9oZddbYXznpULtbddo4aCxFjoHVkvfSavhiHx-7d3E3MaxT3Fqhxw2qX6eXoLQTlcssvrg1ZfrabrHFJp5fspB8LAlHyrFAKFyDDvIYUe-pvRbe5p__cZcAm5jLU4lxbGi2xRMOQB3zkgfhKttAjT8B8glgWk</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC3088629_180_1135</pqid></control><display><type>book_chapter</type><title>Semi-mechanistic Models for State-Estimation – Soft Sensor for Polymer Melt Index Prediction</title><source>Springer Books</source><creator>Feil, Balazs ; Abonyi, Janos ; Pach, Peter ; Nemeth, Sandor ; Arva, Peter ; Nemeth, Miklos ; Nagy, Gabor</creator><contributor>Tadeusiewicz, Ryszard ; Siekmann, Jörg ; Rutkowski, Leszek ; Zadeh, Lotfi A ; Rutkowski, Leszek ; Siekmann, Jörg H. ; Zadeh, Lotfi A. ; Tadeusiewicz, Ryszard</contributor><creatorcontrib>Feil, Balazs ; Abonyi, Janos ; Pach, Peter ; Nemeth, Sandor ; Arva, Peter ; Nemeth, Miklos ; Nagy, Gabor ; Tadeusiewicz, Ryszard ; Siekmann, Jörg ; Rutkowski, Leszek ; Zadeh, Lotfi A ; Rutkowski, Leszek ; Siekmann, Jörg H. ; Zadeh, Lotfi A. ; Tadeusiewicz, Ryszard</creatorcontrib><description>Nonlinear state estimation is a useful approach to the monitoring of industrial (polymerization) processes. This paper investigates how this approach can be followed to the development of a soft sensor of the product quality (melt index). The bottleneck of the successful application of advanced state estimation algorithms is the identification of models that can accurately describe the process. This paper presents a semi-mechanistic modeling approach where neural networks describe the unknown phenomena of the system that cannot be formulated by prior knowledge based differential equations. Since in the presented semi-mechanistic model structure the neural network is a part of a nonlinear algebraic-differential equation set, there are no available direct input-output data to train the weights of the network. To handle this problem in this paper a simple, yet practically useful spline-smoothing based technique has been used. The results show that the developed semi-mechanistic model can be efficiently used for on-line state estimation.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540221234</identifier><identifier>ISBN: 3540221239</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540248446</identifier><identifier>EISBN: 3540248447</identifier><identifier>DOI: 10.1007/978-3-540-24844-6_174</identifier><identifier>OCLC: 934980949</identifier><identifier>LCCallNum: Q334-342</identifier><language>eng</language><publisher>Germany: Springer Berlin / Heidelberg</publisher><subject>Advance Process Control ; Applied sciences ; Artificial intelligence ; Chain Transfer Agent ; Computer science; control theory; systems ; Exact sciences and technology ; Extend Kalman Filter ; Learning and adaptive systems ; Soft Sensor ; State Estimation</subject><ispartof>Artificial Intelligence and Soft Computing - ICAISC 2004, 2004, Vol.3070, p.1111-1117</ispartof><rights>Springer-Verlag Berlin Heidelberg 2004</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/3088629-l.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/978-3-540-24844-6_174$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/978-3-540-24844-6_174$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4050,4051,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15852342$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Tadeusiewicz, Ryszard</contributor><contributor>Siekmann, Jörg</contributor><contributor>Rutkowski, Leszek</contributor><contributor>Zadeh, Lotfi A</contributor><contributor>Rutkowski, Leszek</contributor><contributor>Siekmann, Jörg H.</contributor><contributor>Zadeh, Lotfi A.</contributor><contributor>Tadeusiewicz, Ryszard</contributor><creatorcontrib>Feil, Balazs</creatorcontrib><creatorcontrib>Abonyi, Janos</creatorcontrib><creatorcontrib>Pach, Peter</creatorcontrib><creatorcontrib>Nemeth, Sandor</creatorcontrib><creatorcontrib>Arva, Peter</creatorcontrib><creatorcontrib>Nemeth, Miklos</creatorcontrib><creatorcontrib>Nagy, Gabor</creatorcontrib><title>Semi-mechanistic Models for State-Estimation – Soft Sensor for Polymer Melt Index Prediction</title><title>Artificial Intelligence and Soft Computing - ICAISC 2004</title><description>Nonlinear state estimation is a useful approach to the monitoring of industrial (polymerization) processes. This paper investigates how this approach can be followed to the development of a soft sensor of the product quality (melt index). The bottleneck of the successful application of advanced state estimation algorithms is the identification of models that can accurately describe the process. This paper presents a semi-mechanistic modeling approach where neural networks describe the unknown phenomena of the system that cannot be formulated by prior knowledge based differential equations. Since in the presented semi-mechanistic model structure the neural network is a part of a nonlinear algebraic-differential equation set, there are no available direct input-output data to train the weights of the network. To handle this problem in this paper a simple, yet practically useful spline-smoothing based technique has been used. The results show that the developed semi-mechanistic model can be efficiently used for on-line state estimation.</description><subject>Advance Process Control</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Chain Transfer Agent</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Extend Kalman Filter</subject><subject>Learning and adaptive systems</subject><subject>Soft Sensor</subject><subject>State Estimation</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540221234</isbn><isbn>3540221239</isbn><isbn>9783540248446</isbn><isbn>3540248447</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2004</creationdate><recordtype>book_chapter</recordtype><recordid>eNpFkE1OHDEQhU2AKCOYIyB5k6WD7fLvEiFIkEAgTbKN5e6uhoae7ontSLDLHXLDnCSeAYnalPTqvafSR8iJ4F8E5_bUW8eAacWZVE4pZoKwao8sqw5V3YnmA1kIIwQDUH7__SaFBHVAFhy4ZN4q-EgWvloc98p_IsucH3kdwWsWFuTnCtcDW2P7EKchl6GlN3OHY6b9nOiqxILsosrrWIZ5ov_-_KWruS90hVOuhq3pbh5f1pjoDY6FXk0dPtO7hN3QbhPH5LCPY8bl2z4iPy4vvp9_Y9e3X6_Oz67ZRloorBHGcehlYyT2YKzHyHXDjY9oZddbYXznpULtbddo4aCxFjoHVkvfSavhiHx-7d3E3MaxT3Fqhxw2qX6eXoLQTlcssvrg1ZfrabrHFJp5fspB8LAlHyrFAKFyDDvIYUe-pvRbe5p__cZcAm5jLU4lxbGi2xRMOQB3zkgfhKttAjT8B8glgWk</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Feil, Balazs</creator><creator>Abonyi, Janos</creator><creator>Pach, Peter</creator><creator>Nemeth, Sandor</creator><creator>Arva, Peter</creator><creator>Nemeth, Miklos</creator><creator>Nagy, Gabor</creator><general>Springer Berlin / Heidelberg</general><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>FFUUA</scope><scope>IQODW</scope></search><sort><creationdate>2004</creationdate><title>Semi-mechanistic Models for State-Estimation – Soft Sensor for Polymer Melt Index Prediction</title><author>Feil, Balazs ; Abonyi, Janos ; Pach, Peter ; Nemeth, Sandor ; Arva, Peter ; Nemeth, Miklos ; Nagy, Gabor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p273t-b16803f2b62ef3679ea05b069ae72df7169d924e597db5183b773d837529d2753</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Advance Process Control</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Chain Transfer Agent</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Extend Kalman Filter</topic><topic>Learning and adaptive systems</topic><topic>Soft Sensor</topic><topic>State Estimation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feil, Balazs</creatorcontrib><creatorcontrib>Abonyi, Janos</creatorcontrib><creatorcontrib>Pach, Peter</creatorcontrib><creatorcontrib>Nemeth, Sandor</creatorcontrib><creatorcontrib>Arva, Peter</creatorcontrib><creatorcontrib>Nemeth, Miklos</creatorcontrib><creatorcontrib>Nagy, Gabor</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feil, Balazs</au><au>Abonyi, Janos</au><au>Pach, Peter</au><au>Nemeth, Sandor</au><au>Arva, Peter</au><au>Nemeth, Miklos</au><au>Nagy, Gabor</au><au>Tadeusiewicz, Ryszard</au><au>Siekmann, Jörg</au><au>Rutkowski, Leszek</au><au>Zadeh, Lotfi A</au><au>Rutkowski, Leszek</au><au>Siekmann, Jörg H.</au><au>Zadeh, Lotfi A.</au><au>Tadeusiewicz, Ryszard</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Semi-mechanistic Models for State-Estimation – Soft Sensor for Polymer Melt Index Prediction</atitle><btitle>Artificial Intelligence and Soft Computing - ICAISC 2004</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2004</date><risdate>2004</risdate><volume>3070</volume><spage>1111</spage><epage>1117</epage><pages>1111-1117</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540221234</isbn><isbn>3540221239</isbn><eisbn>9783540248446</eisbn><eisbn>3540248447</eisbn><abstract>Nonlinear state estimation is a useful approach to the monitoring of industrial (polymerization) processes. This paper investigates how this approach can be followed to the development of a soft sensor of the product quality (melt index). The bottleneck of the successful application of advanced state estimation algorithms is the identification of models that can accurately describe the process. This paper presents a semi-mechanistic modeling approach where neural networks describe the unknown phenomena of the system that cannot be formulated by prior knowledge based differential equations. Since in the presented semi-mechanistic model structure the neural network is a part of a nonlinear algebraic-differential equation set, there are no available direct input-output data to train the weights of the network. To handle this problem in this paper a simple, yet practically useful spline-smoothing based technique has been used. The results show that the developed semi-mechanistic model can be efficiently used for on-line state estimation.</abstract><cop>Germany</cop><pub>Springer Berlin / Heidelberg</pub><doi>10.1007/978-3-540-24844-6_174</doi><oclcid>934980949</oclcid><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Artificial Intelligence and Soft Computing - ICAISC 2004, 2004, Vol.3070, p.1111-1117
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_15852342
source Springer Books
subjects Advance Process Control
Applied sciences
Artificial intelligence
Chain Transfer Agent
Computer science
control theory
systems
Exact sciences and technology
Extend Kalman Filter
Learning and adaptive systems
Soft Sensor
State Estimation
title Semi-mechanistic Models for State-Estimation – Soft Sensor for Polymer Melt Index Prediction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T10%3A53%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Semi-mechanistic%20Models%20for%20State-Estimation%20%E2%80%93%20Soft%20Sensor%20for%20Polymer%20Melt%20Index%20Prediction&rft.btitle=Artificial%20Intelligence%20and%20Soft%20Computing%20-%20ICAISC%202004&rft.au=Feil,%20Balazs&rft.date=2004&rft.volume=3070&rft.spage=1111&rft.epage=1117&rft.pages=1111-1117&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540221234&rft.isbn_list=3540221239&rft_id=info:doi/10.1007/978-3-540-24844-6_174&rft_dat=%3Cproquest_pasca%3EEBC3088629_180_1135%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540248446&rft.eisbn_list=3540248447&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC3088629_180_1135&rft_id=info:pmid/&rfr_iscdi=true