Cooperation between Branch and Bound and Evolutionary Approaches to Solve a Bi-objective Flow Shop Problem

Over the years, many techniques have been established to solve NP-Hard Optimization Problems and in particular multiobjective problems. Each of them are efficient on several types of problems or instances. We can distinguish exact methods dedicated to solve small instances, from heuristics – and par...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Basseur, Matthieu, Lemesre, Julien, Dhaenens, Clarisse, Talbi, El-Ghazali
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 86
container_issue
container_start_page 72
container_title
container_volume 3059
creator Basseur, Matthieu
Lemesre, Julien
Dhaenens, Clarisse
Talbi, El-Ghazali
description Over the years, many techniques have been established to solve NP-Hard Optimization Problems and in particular multiobjective problems. Each of them are efficient on several types of problems or instances. We can distinguish exact methods dedicated to solve small instances, from heuristics – and particularly metaheuristics – that approximate best solutions on large instances. In this article, we firstly present an efficient exact method, called the two-phases method. We apply it to a biobjective Flow Shop Problem to find the optimal set of solutions. Exact methods are limited by the size of the instances, so we propose an original cooperation between this exact method and a Genetic Algorithm to obtain good results on large instances. Results obtained are promising and show that cooperation between antagonist optimization methods could be very efficient.
doi_str_mv 10.1007/978-3-540-24838-5_6
format Book Chapter
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_15851820</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC3088362_11_81</sourcerecordid><originalsourceid>FETCH-LOGICAL-c320t-cf9214d4278c4a30d2c7dd63bcf61c5907782a1e77fe932b3577a7adbb6dda843</originalsourceid><addsrcrecordid>eNpFUcFu3CAQpWkTZZXuF-TCpUdahsGAj9nVJo0UqZXSnhHGuOutY1zwJsrfFyeRMgdmePPeCN4Qcgn8K3Cuv9XaMGSV5ExIg4ZVVn0g64JiwV6g6oSsQAEwRFl_fO8JrjR8IiuOXLBaSzwj54prpZSR52Sd84GXgEpwqVfksI1xCsnNfRxpE-anEEa6SW70e-rGlm7isZxLtXuMw3GhufRMr6YpRef3IdM50vs4PAbq6KZnsTkEP_flej3EJ3q_jxP9mWIzhIfP5LRzQw7rt3xBfl_vfm2_s7sfN7fbqzvmUfCZ-a4WIFsptPHSIW-F122rsPGdAl_VXGsjHAStu1CjaLDS2mnXNo1qW2ckXpAvr3Mnl70buuUzfbZT6h_K0y1UpgIjeOHBKy-X1vgnJNvE-Ddb4HZZgS2GWrTFUvvity0rKBrxNjvFf8eQZxsWkQ_jnNzg926aQ8oWuTGohAWwBvA_4h-EXw</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC3088362_11_81</pqid></control><display><type>book_chapter</type><title>Cooperation between Branch and Bound and Evolutionary Approaches to Solve a Bi-objective Flow Shop Problem</title><source>Springer Books</source><creator>Basseur, Matthieu ; Lemesre, Julien ; Dhaenens, Clarisse ; Talbi, El-Ghazali</creator><contributor>Martins, Simone L ; Ribeiro, Celso C ; Martins, Simone L. ; Ribeiro, Celso C.</contributor><creatorcontrib>Basseur, Matthieu ; Lemesre, Julien ; Dhaenens, Clarisse ; Talbi, El-Ghazali ; Martins, Simone L ; Ribeiro, Celso C ; Martins, Simone L. ; Ribeiro, Celso C.</creatorcontrib><description>Over the years, many techniques have been established to solve NP-Hard Optimization Problems and in particular multiobjective problems. Each of them are efficient on several types of problems or instances. We can distinguish exact methods dedicated to solve small instances, from heuristics – and particularly metaheuristics – that approximate best solutions on large instances. In this article, we firstly present an efficient exact method, called the two-phases method. We apply it to a biobjective Flow Shop Problem to find the optimal set of solutions. Exact methods are limited by the size of the instances, so we propose an original cooperation between this exact method and a Genetic Algorithm to obtain good results on large instances. Results obtained are promising and show that cooperation between antagonist optimization methods could be very efficient.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540220671</identifier><identifier>ISBN: 3540220674</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540248385</identifier><identifier>EISBN: 3540248382</identifier><identifier>DOI: 10.1007/978-3-540-24838-5_6</identifier><identifier>OCLC: 60766684</identifier><identifier>LCCallNum: T57-57.97</identifier><language>eng</language><publisher>Germany: Springer Berlin / Heidelberg</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Computer science; control theory; systems ; Exact Method ; Exact sciences and technology ; Memetic Algorithm ; Multiobjective Optimization ; Pareto Front ; Schedule Problem ; Theoretical computing</subject><ispartof>Experimental and Efficient Algorithms, 2004, Vol.3059, p.72-86</ispartof><rights>Springer-Verlag Berlin Heidelberg 2004</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c320t-cf9214d4278c4a30d2c7dd63bcf61c5907782a1e77fe932b3577a7adbb6dda843</citedby><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/3088362-l.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/978-3-540-24838-5_6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/978-3-540-24838-5_6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>310,311,780,781,785,790,791,794,4051,4052,27927,38257,41444,42513</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15851820$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Martins, Simone L</contributor><contributor>Ribeiro, Celso C</contributor><contributor>Martins, Simone L.</contributor><contributor>Ribeiro, Celso C.</contributor><creatorcontrib>Basseur, Matthieu</creatorcontrib><creatorcontrib>Lemesre, Julien</creatorcontrib><creatorcontrib>Dhaenens, Clarisse</creatorcontrib><creatorcontrib>Talbi, El-Ghazali</creatorcontrib><title>Cooperation between Branch and Bound and Evolutionary Approaches to Solve a Bi-objective Flow Shop Problem</title><title>Experimental and Efficient Algorithms</title><description>Over the years, many techniques have been established to solve NP-Hard Optimization Problems and in particular multiobjective problems. Each of them are efficient on several types of problems or instances. We can distinguish exact methods dedicated to solve small instances, from heuristics – and particularly metaheuristics – that approximate best solutions on large instances. In this article, we firstly present an efficient exact method, called the two-phases method. We apply it to a biobjective Flow Shop Problem to find the optimal set of solutions. Exact methods are limited by the size of the instances, so we propose an original cooperation between this exact method and a Genetic Algorithm to obtain good results on large instances. Results obtained are promising and show that cooperation between antagonist optimization methods could be very efficient.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Exact Method</subject><subject>Exact sciences and technology</subject><subject>Memetic Algorithm</subject><subject>Multiobjective Optimization</subject><subject>Pareto Front</subject><subject>Schedule Problem</subject><subject>Theoretical computing</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540220671</isbn><isbn>3540220674</isbn><isbn>9783540248385</isbn><isbn>3540248382</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2004</creationdate><recordtype>book_chapter</recordtype><recordid>eNpFUcFu3CAQpWkTZZXuF-TCpUdahsGAj9nVJo0UqZXSnhHGuOutY1zwJsrfFyeRMgdmePPeCN4Qcgn8K3Cuv9XaMGSV5ExIg4ZVVn0g64JiwV6g6oSsQAEwRFl_fO8JrjR8IiuOXLBaSzwj54prpZSR52Sd84GXgEpwqVfksI1xCsnNfRxpE-anEEa6SW70e-rGlm7isZxLtXuMw3GhufRMr6YpRef3IdM50vs4PAbq6KZnsTkEP_flej3EJ3q_jxP9mWIzhIfP5LRzQw7rt3xBfl_vfm2_s7sfN7fbqzvmUfCZ-a4WIFsptPHSIW-F122rsPGdAl_VXGsjHAStu1CjaLDS2mnXNo1qW2ckXpAvr3Mnl70buuUzfbZT6h_K0y1UpgIjeOHBKy-X1vgnJNvE-Ddb4HZZgS2GWrTFUvvity0rKBrxNjvFf8eQZxsWkQ_jnNzg926aQ8oWuTGohAWwBvA_4h-EXw</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Basseur, Matthieu</creator><creator>Lemesre, Julien</creator><creator>Dhaenens, Clarisse</creator><creator>Talbi, El-Ghazali</creator><general>Springer Berlin / Heidelberg</general><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>FFUUA</scope><scope>IQODW</scope></search><sort><creationdate>2004</creationdate><title>Cooperation between Branch and Bound and Evolutionary Approaches to Solve a Bi-objective Flow Shop Problem</title><author>Basseur, Matthieu ; Lemesre, Julien ; Dhaenens, Clarisse ; Talbi, El-Ghazali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c320t-cf9214d4278c4a30d2c7dd63bcf61c5907782a1e77fe932b3577a7adbb6dda843</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Exact Method</topic><topic>Exact sciences and technology</topic><topic>Memetic Algorithm</topic><topic>Multiobjective Optimization</topic><topic>Pareto Front</topic><topic>Schedule Problem</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Basseur, Matthieu</creatorcontrib><creatorcontrib>Lemesre, Julien</creatorcontrib><creatorcontrib>Dhaenens, Clarisse</creatorcontrib><creatorcontrib>Talbi, El-Ghazali</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Basseur, Matthieu</au><au>Lemesre, Julien</au><au>Dhaenens, Clarisse</au><au>Talbi, El-Ghazali</au><au>Martins, Simone L</au><au>Ribeiro, Celso C</au><au>Martins, Simone L.</au><au>Ribeiro, Celso C.</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Cooperation between Branch and Bound and Evolutionary Approaches to Solve a Bi-objective Flow Shop Problem</atitle><btitle>Experimental and Efficient Algorithms</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2004</date><risdate>2004</risdate><volume>3059</volume><spage>72</spage><epage>86</epage><pages>72-86</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540220671</isbn><isbn>3540220674</isbn><eisbn>9783540248385</eisbn><eisbn>3540248382</eisbn><abstract>Over the years, many techniques have been established to solve NP-Hard Optimization Problems and in particular multiobjective problems. Each of them are efficient on several types of problems or instances. We can distinguish exact methods dedicated to solve small instances, from heuristics – and particularly metaheuristics – that approximate best solutions on large instances. In this article, we firstly present an efficient exact method, called the two-phases method. We apply it to a biobjective Flow Shop Problem to find the optimal set of solutions. Exact methods are limited by the size of the instances, so we propose an original cooperation between this exact method and a Genetic Algorithm to obtain good results on large instances. Results obtained are promising and show that cooperation between antagonist optimization methods could be very efficient.</abstract><cop>Germany</cop><pub>Springer Berlin / Heidelberg</pub><doi>10.1007/978-3-540-24838-5_6</doi><oclcid>60766684</oclcid><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Experimental and Efficient Algorithms, 2004, Vol.3059, p.72-86
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_15851820
source Springer Books
subjects Algorithmics. Computability. Computer arithmetics
Applied sciences
Computer science
control theory
systems
Exact Method
Exact sciences and technology
Memetic Algorithm
Multiobjective Optimization
Pareto Front
Schedule Problem
Theoretical computing
title Cooperation between Branch and Bound and Evolutionary Approaches to Solve a Bi-objective Flow Shop Problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T06%3A12%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Cooperation%20between%20Branch%20and%20Bound%20and%20Evolutionary%20Approaches%20to%20Solve%20a%20Bi-objective%20Flow%20Shop%20Problem&rft.btitle=Experimental%20and%20Efficient%20Algorithms&rft.au=Basseur,%20Matthieu&rft.date=2004&rft.volume=3059&rft.spage=72&rft.epage=86&rft.pages=72-86&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540220671&rft.isbn_list=3540220674&rft_id=info:doi/10.1007/978-3-540-24838-5_6&rft_dat=%3Cproquest_pasca%3EEBC3088362_11_81%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540248385&rft.eisbn_list=3540248382&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC3088362_11_81&rft_id=info:pmid/&rfr_iscdi=true