Cooperation between Branch and Bound and Evolutionary Approaches to Solve a Bi-objective Flow Shop Problem
Over the years, many techniques have been established to solve NP-Hard Optimization Problems and in particular multiobjective problems. Each of them are efficient on several types of problems or instances. We can distinguish exact methods dedicated to solve small instances, from heuristics – and par...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 86 |
---|---|
container_issue | |
container_start_page | 72 |
container_title | |
container_volume | 3059 |
creator | Basseur, Matthieu Lemesre, Julien Dhaenens, Clarisse Talbi, El-Ghazali |
description | Over the years, many techniques have been established to solve NP-Hard Optimization Problems and in particular multiobjective problems. Each of them are efficient on several types of problems or instances. We can distinguish exact methods dedicated to solve small instances, from heuristics – and particularly metaheuristics – that approximate best solutions on large instances. In this article, we firstly present an efficient exact method, called the two-phases method. We apply it to a biobjective Flow Shop Problem to find the optimal set of solutions. Exact methods are limited by the size of the instances, so we propose an original cooperation between this exact method and a Genetic Algorithm to obtain good results on large instances. Results obtained are promising and show that cooperation between antagonist optimization methods could be very efficient. |
doi_str_mv | 10.1007/978-3-540-24838-5_6 |
format | Book Chapter |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_15851820</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC3088362_11_81</sourcerecordid><originalsourceid>FETCH-LOGICAL-c320t-cf9214d4278c4a30d2c7dd63bcf61c5907782a1e77fe932b3577a7adbb6dda843</originalsourceid><addsrcrecordid>eNpFUcFu3CAQpWkTZZXuF-TCpUdahsGAj9nVJo0UqZXSnhHGuOutY1zwJsrfFyeRMgdmePPeCN4Qcgn8K3Cuv9XaMGSV5ExIg4ZVVn0g64JiwV6g6oSsQAEwRFl_fO8JrjR8IiuOXLBaSzwj54prpZSR52Sd84GXgEpwqVfksI1xCsnNfRxpE-anEEa6SW70e-rGlm7isZxLtXuMw3GhufRMr6YpRef3IdM50vs4PAbq6KZnsTkEP_flej3EJ3q_jxP9mWIzhIfP5LRzQw7rt3xBfl_vfm2_s7sfN7fbqzvmUfCZ-a4WIFsptPHSIW-F122rsPGdAl_VXGsjHAStu1CjaLDS2mnXNo1qW2ckXpAvr3Mnl70buuUzfbZT6h_K0y1UpgIjeOHBKy-X1vgnJNvE-Ddb4HZZgS2GWrTFUvvity0rKBrxNjvFf8eQZxsWkQ_jnNzg926aQ8oWuTGohAWwBvA_4h-EXw</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC3088362_11_81</pqid></control><display><type>book_chapter</type><title>Cooperation between Branch and Bound and Evolutionary Approaches to Solve a Bi-objective Flow Shop Problem</title><source>Springer Books</source><creator>Basseur, Matthieu ; Lemesre, Julien ; Dhaenens, Clarisse ; Talbi, El-Ghazali</creator><contributor>Martins, Simone L ; Ribeiro, Celso C ; Martins, Simone L. ; Ribeiro, Celso C.</contributor><creatorcontrib>Basseur, Matthieu ; Lemesre, Julien ; Dhaenens, Clarisse ; Talbi, El-Ghazali ; Martins, Simone L ; Ribeiro, Celso C ; Martins, Simone L. ; Ribeiro, Celso C.</creatorcontrib><description>Over the years, many techniques have been established to solve NP-Hard Optimization Problems and in particular multiobjective problems. Each of them are efficient on several types of problems or instances. We can distinguish exact methods dedicated to solve small instances, from heuristics – and particularly metaheuristics – that approximate best solutions on large instances. In this article, we firstly present an efficient exact method, called the two-phases method. We apply it to a biobjective Flow Shop Problem to find the optimal set of solutions. Exact methods are limited by the size of the instances, so we propose an original cooperation between this exact method and a Genetic Algorithm to obtain good results on large instances. Results obtained are promising and show that cooperation between antagonist optimization methods could be very efficient.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540220671</identifier><identifier>ISBN: 3540220674</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540248385</identifier><identifier>EISBN: 3540248382</identifier><identifier>DOI: 10.1007/978-3-540-24838-5_6</identifier><identifier>OCLC: 60766684</identifier><identifier>LCCallNum: T57-57.97</identifier><language>eng</language><publisher>Germany: Springer Berlin / Heidelberg</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Computer science; control theory; systems ; Exact Method ; Exact sciences and technology ; Memetic Algorithm ; Multiobjective Optimization ; Pareto Front ; Schedule Problem ; Theoretical computing</subject><ispartof>Experimental and Efficient Algorithms, 2004, Vol.3059, p.72-86</ispartof><rights>Springer-Verlag Berlin Heidelberg 2004</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c320t-cf9214d4278c4a30d2c7dd63bcf61c5907782a1e77fe932b3577a7adbb6dda843</citedby><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/3088362-l.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/978-3-540-24838-5_6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/978-3-540-24838-5_6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>310,311,780,781,785,790,791,794,4051,4052,27927,38257,41444,42513</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15851820$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Martins, Simone L</contributor><contributor>Ribeiro, Celso C</contributor><contributor>Martins, Simone L.</contributor><contributor>Ribeiro, Celso C.</contributor><creatorcontrib>Basseur, Matthieu</creatorcontrib><creatorcontrib>Lemesre, Julien</creatorcontrib><creatorcontrib>Dhaenens, Clarisse</creatorcontrib><creatorcontrib>Talbi, El-Ghazali</creatorcontrib><title>Cooperation between Branch and Bound and Evolutionary Approaches to Solve a Bi-objective Flow Shop Problem</title><title>Experimental and Efficient Algorithms</title><description>Over the years, many techniques have been established to solve NP-Hard Optimization Problems and in particular multiobjective problems. Each of them are efficient on several types of problems or instances. We can distinguish exact methods dedicated to solve small instances, from heuristics – and particularly metaheuristics – that approximate best solutions on large instances. In this article, we firstly present an efficient exact method, called the two-phases method. We apply it to a biobjective Flow Shop Problem to find the optimal set of solutions. Exact methods are limited by the size of the instances, so we propose an original cooperation between this exact method and a Genetic Algorithm to obtain good results on large instances. Results obtained are promising and show that cooperation between antagonist optimization methods could be very efficient.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Exact Method</subject><subject>Exact sciences and technology</subject><subject>Memetic Algorithm</subject><subject>Multiobjective Optimization</subject><subject>Pareto Front</subject><subject>Schedule Problem</subject><subject>Theoretical computing</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540220671</isbn><isbn>3540220674</isbn><isbn>9783540248385</isbn><isbn>3540248382</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2004</creationdate><recordtype>book_chapter</recordtype><recordid>eNpFUcFu3CAQpWkTZZXuF-TCpUdahsGAj9nVJo0UqZXSnhHGuOutY1zwJsrfFyeRMgdmePPeCN4Qcgn8K3Cuv9XaMGSV5ExIg4ZVVn0g64JiwV6g6oSsQAEwRFl_fO8JrjR8IiuOXLBaSzwj54prpZSR52Sd84GXgEpwqVfksI1xCsnNfRxpE-anEEa6SW70e-rGlm7isZxLtXuMw3GhufRMr6YpRef3IdM50vs4PAbq6KZnsTkEP_flej3EJ3q_jxP9mWIzhIfP5LRzQw7rt3xBfl_vfm2_s7sfN7fbqzvmUfCZ-a4WIFsptPHSIW-F122rsPGdAl_VXGsjHAStu1CjaLDS2mnXNo1qW2ckXpAvr3Mnl70buuUzfbZT6h_K0y1UpgIjeOHBKy-X1vgnJNvE-Ddb4HZZgS2GWrTFUvvity0rKBrxNjvFf8eQZxsWkQ_jnNzg926aQ8oWuTGohAWwBvA_4h-EXw</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Basseur, Matthieu</creator><creator>Lemesre, Julien</creator><creator>Dhaenens, Clarisse</creator><creator>Talbi, El-Ghazali</creator><general>Springer Berlin / Heidelberg</general><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>FFUUA</scope><scope>IQODW</scope></search><sort><creationdate>2004</creationdate><title>Cooperation between Branch and Bound and Evolutionary Approaches to Solve a Bi-objective Flow Shop Problem</title><author>Basseur, Matthieu ; Lemesre, Julien ; Dhaenens, Clarisse ; Talbi, El-Ghazali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c320t-cf9214d4278c4a30d2c7dd63bcf61c5907782a1e77fe932b3577a7adbb6dda843</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Exact Method</topic><topic>Exact sciences and technology</topic><topic>Memetic Algorithm</topic><topic>Multiobjective Optimization</topic><topic>Pareto Front</topic><topic>Schedule Problem</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Basseur, Matthieu</creatorcontrib><creatorcontrib>Lemesre, Julien</creatorcontrib><creatorcontrib>Dhaenens, Clarisse</creatorcontrib><creatorcontrib>Talbi, El-Ghazali</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Basseur, Matthieu</au><au>Lemesre, Julien</au><au>Dhaenens, Clarisse</au><au>Talbi, El-Ghazali</au><au>Martins, Simone L</au><au>Ribeiro, Celso C</au><au>Martins, Simone L.</au><au>Ribeiro, Celso C.</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Cooperation between Branch and Bound and Evolutionary Approaches to Solve a Bi-objective Flow Shop Problem</atitle><btitle>Experimental and Efficient Algorithms</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2004</date><risdate>2004</risdate><volume>3059</volume><spage>72</spage><epage>86</epage><pages>72-86</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540220671</isbn><isbn>3540220674</isbn><eisbn>9783540248385</eisbn><eisbn>3540248382</eisbn><abstract>Over the years, many techniques have been established to solve NP-Hard Optimization Problems and in particular multiobjective problems. Each of them are efficient on several types of problems or instances. We can distinguish exact methods dedicated to solve small instances, from heuristics – and particularly metaheuristics – that approximate best solutions on large instances. In this article, we firstly present an efficient exact method, called the two-phases method. We apply it to a biobjective Flow Shop Problem to find the optimal set of solutions. Exact methods are limited by the size of the instances, so we propose an original cooperation between this exact method and a Genetic Algorithm to obtain good results on large instances. Results obtained are promising and show that cooperation between antagonist optimization methods could be very efficient.</abstract><cop>Germany</cop><pub>Springer Berlin / Heidelberg</pub><doi>10.1007/978-3-540-24838-5_6</doi><oclcid>60766684</oclcid><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Experimental and Efficient Algorithms, 2004, Vol.3059, p.72-86 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_15851820 |
source | Springer Books |
subjects | Algorithmics. Computability. Computer arithmetics Applied sciences Computer science control theory systems Exact Method Exact sciences and technology Memetic Algorithm Multiobjective Optimization Pareto Front Schedule Problem Theoretical computing |
title | Cooperation between Branch and Bound and Evolutionary Approaches to Solve a Bi-objective Flow Shop Problem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T06%3A12%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Cooperation%20between%20Branch%20and%20Bound%20and%20Evolutionary%20Approaches%20to%20Solve%20a%20Bi-objective%20Flow%20Shop%20Problem&rft.btitle=Experimental%20and%20Efficient%20Algorithms&rft.au=Basseur,%20Matthieu&rft.date=2004&rft.volume=3059&rft.spage=72&rft.epage=86&rft.pages=72-86&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540220671&rft.isbn_list=3540220674&rft_id=info:doi/10.1007/978-3-540-24838-5_6&rft_dat=%3Cproquest_pasca%3EEBC3088362_11_81%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540248385&rft.eisbn_list=3540248382&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC3088362_11_81&rft_id=info:pmid/&rfr_iscdi=true |