The effect of recombinant IgG antibodies against the leucine-33 form of the platelet β3 integrin (HPA-1a) on platelet function
Summary Recombinant HPA-1a antibodies with Fc, mutated to remove destructive effector functions, have been developed as a potential therapy for fetomaternal alloimmune thrombocytopenia (FMAIT), via blockade of binding of human HPA-1a polyclonal antibodies to fetal HPA-1a1b platelets. We have assesse...
Gespeichert in:
Veröffentlicht in: | Thrombosis and haemostasis 2004, Vol.91 (4), p.743-754 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Summary
Recombinant HPA-1a antibodies with Fc, mutated to remove destructive effector functions, have been developed as a potential therapy for fetomaternal alloimmune thrombocytopenia (FMAIT), via blockade of binding of human HPA-1a polyclonal antibodies to fetal HPA-1a1b platelets. We have assessed the effect of the IgG1 HPA-1a antibody B2G1 and two mutated derivatives in various functional assays in resting and agoniststimulated platelets of the three HPA-1 genotypes. With HPA-1a1b platelets (fetal genotype), the antibodies did not activate signalling or CD62P expression in resting platelets, did not change
in vitro
bleeding time (IVBT), and did not inhibit platelet adhesion to collagen in flowing blood. Adhesion of HPA-1a1b platelets to fibrinogen was reduced by 20%, and aggregation induced by ADP by 50%, but collagen-related peptide (CRP-XL)-induced aggregation was normal. With HPA-1a1a platelets, aggregation to both ADP and CRP-XL was inhibited, with total blockade of adhesion to fibrinogen and of IVBT responses. Interestingly, a monovalent antibody fragment with identical specificity had no inhibitory effect on aggregation. In static adhesion assays using human αIIbβ3 or αVβ3 transfectants of HPA-1a (Leu
33
) phenotype, attachment to fibrinogen of the latter but not of the former was completely blocked by the HPA-1a antibodies. These observations are best explained by antibody-mediated blockade of the RGD binding site on β3 by a mechanism of steric hindrance. As the effect on platelet function is modest with HPA-1a1b (fetal type) platelets, the mutated HPA-1a antibodies described here could be developed further for FMAIT therapy. |
---|---|
ISSN: | 0340-6245 2567-689X |
DOI: | 10.1160/TH03-07-0484 |