Minimal Assignments for Bounded Model Checking

A traditional counterexample to a linear-time safety property shows the values of all signals at all times prior to the error. However, some signals may not be critical to causing the failure. A succinct explanation may help human understanding as well as speed up algorithms that have to analyze man...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ravi, Kavita, Somenzi, Fabio
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 45
container_issue
container_start_page 31
container_title
container_volume 2988
creator Ravi, Kavita
Somenzi, Fabio
description A traditional counterexample to a linear-time safety property shows the values of all signals at all times prior to the error. However, some signals may not be critical to causing the failure. A succinct explanation may help human understanding as well as speed up algorithms that have to analyze many such traces. In Bounded Model Checking (BMC), a counterexample is constructed from a satisfying assignment to a Boolean formula, typically in CNF. Modern SAT solvers usually assign values to all variables when the input formula is satisfiable. Deriving minimal satisfying assignments from such complete assignments does not lead to concise explanations of counterexamples because of how CNF formulae are derived from the models. Hence, we formulate the extraction of a succinct counterexample as the problem of finding a minimal assignment that, together with the Boolean formula describing the model, implies an objective. We present a two-stage algorithm for this problem, such that the result of each stage contributes to identify the “interesting” events that cause the failure. We demonstrate the effectiveness of our approach with an example and with experimental results.
doi_str_mv 10.1007/978-3-540-24730-2_3
format Book Chapter
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_15759056</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC3087789_10_44</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-27164ded40e8b89fe1369118fc22a1ee1a50b88e0ffda81465deb860972773a53</originalsourceid><addsrcrecordid>eNotkMtuwyAQRelTddN8QTfedEk6A9jAMo36khJ100rdIWzjxI1jp-As-vclDxYg5s69DIeQe4QJAshHLRXlNBNAmZA87oafkVseC4c7nJMEc0TKudAXJwGZ1t-XJAEOjGop-DVJdNSlVhJuyDiEH4iL5fEBnZDJoumajW3TaQjNstu4bghp3fv0qd91lavSRV-5Np2tXLluuuUduaptG9z4dI7I18vz5-yNzj9e32fTOS0Fx4EyibmIbgFOFUrXDnmuEVVdMmbRObQZFEo5qOvKKhR5VrlC5aAlk5LbjI_IwzF3a0Np29rbrmyC2fo4q_8zmMlMQ5bHPjz2hSh1S-dN0ffrYBDMnqCJBA03kYs5EDORYPSwU7bvf3cuDMbtTWX8urdtubLbwflgOCgpld5HCcH_AR1cbM8</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC3087789_10_44</pqid></control><display><type>book_chapter</type><title>Minimal Assignments for Bounded Model Checking</title><source>Springer Books</source><creator>Ravi, Kavita ; Somenzi, Fabio</creator><contributor>Jensen, Kurt ; Podelski, Andreas ; Podelski, Andreas ; Jensen, Kurt</contributor><creatorcontrib>Ravi, Kavita ; Somenzi, Fabio ; Jensen, Kurt ; Podelski, Andreas ; Podelski, Andreas ; Jensen, Kurt</creatorcontrib><description>A traditional counterexample to a linear-time safety property shows the values of all signals at all times prior to the error. However, some signals may not be critical to causing the failure. A succinct explanation may help human understanding as well as speed up algorithms that have to analyze many such traces. In Bounded Model Checking (BMC), a counterexample is constructed from a satisfying assignment to a Boolean formula, typically in CNF. Modern SAT solvers usually assign values to all variables when the input formula is satisfiable. Deriving minimal satisfying assignments from such complete assignments does not lead to concise explanations of counterexamples because of how CNF formulae are derived from the models. Hence, we formulate the extraction of a succinct counterexample as the problem of finding a minimal assignment that, together with the Boolean formula describing the model, implies an objective. We present a two-stage algorithm for this problem, such that the result of each stage contributes to identify the “interesting” events that cause the failure. We demonstrate the effectiveness of our approach with an example and with experimental results.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 354021299X</identifier><identifier>ISBN: 9783540212997</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540247300</identifier><identifier>EISBN: 9783540247302</identifier><identifier>DOI: 10.1007/978-3-540-24730-2_3</identifier><identifier>OCLC: 934979870</identifier><identifier>LCCallNum: QA76.758</identifier><language>eng</language><publisher>Germany: Springer Berlin / Heidelberg</publisher><subject>Applied sciences ; Boolean Formula ; Computer science; control theory; systems ; Conjunctive Normal Form ; Exact sciences and technology ; Partial Assignment ; Satisfying Assignment ; Software ; Software engineering ; Unit Clause</subject><ispartof>Lecture notes in computer science, 2004, Vol.2988, p.31-45</ispartof><rights>Springer-Verlag Berlin Heidelberg 2004</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c431t-27164ded40e8b89fe1369118fc22a1ee1a50b88e0ffda81465deb860972773a53</citedby><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/3087789-l.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/978-3-540-24730-2_3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/978-3-540-24730-2_3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,776,777,781,786,787,790,4036,4037,27906,38236,41423,42492</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15759056$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Jensen, Kurt</contributor><contributor>Podelski, Andreas</contributor><contributor>Podelski, Andreas</contributor><contributor>Jensen, Kurt</contributor><creatorcontrib>Ravi, Kavita</creatorcontrib><creatorcontrib>Somenzi, Fabio</creatorcontrib><title>Minimal Assignments for Bounded Model Checking</title><title>Lecture notes in computer science</title><description>A traditional counterexample to a linear-time safety property shows the values of all signals at all times prior to the error. However, some signals may not be critical to causing the failure. A succinct explanation may help human understanding as well as speed up algorithms that have to analyze many such traces. In Bounded Model Checking (BMC), a counterexample is constructed from a satisfying assignment to a Boolean formula, typically in CNF. Modern SAT solvers usually assign values to all variables when the input formula is satisfiable. Deriving minimal satisfying assignments from such complete assignments does not lead to concise explanations of counterexamples because of how CNF formulae are derived from the models. Hence, we formulate the extraction of a succinct counterexample as the problem of finding a minimal assignment that, together with the Boolean formula describing the model, implies an objective. We present a two-stage algorithm for this problem, such that the result of each stage contributes to identify the “interesting” events that cause the failure. We demonstrate the effectiveness of our approach with an example and with experimental results.</description><subject>Applied sciences</subject><subject>Boolean Formula</subject><subject>Computer science; control theory; systems</subject><subject>Conjunctive Normal Form</subject><subject>Exact sciences and technology</subject><subject>Partial Assignment</subject><subject>Satisfying Assignment</subject><subject>Software</subject><subject>Software engineering</subject><subject>Unit Clause</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>354021299X</isbn><isbn>9783540212997</isbn><isbn>3540247300</isbn><isbn>9783540247302</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2004</creationdate><recordtype>book_chapter</recordtype><recordid>eNotkMtuwyAQRelTddN8QTfedEk6A9jAMo36khJ100rdIWzjxI1jp-As-vclDxYg5s69DIeQe4QJAshHLRXlNBNAmZA87oafkVseC4c7nJMEc0TKudAXJwGZ1t-XJAEOjGop-DVJdNSlVhJuyDiEH4iL5fEBnZDJoumajW3TaQjNstu4bghp3fv0qd91lavSRV-5Np2tXLluuuUduaptG9z4dI7I18vz5-yNzj9e32fTOS0Fx4EyibmIbgFOFUrXDnmuEVVdMmbRObQZFEo5qOvKKhR5VrlC5aAlk5LbjI_IwzF3a0Np29rbrmyC2fo4q_8zmMlMQ5bHPjz2hSh1S-dN0ffrYBDMnqCJBA03kYs5EDORYPSwU7bvf3cuDMbtTWX8urdtubLbwflgOCgpld5HCcH_AR1cbM8</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Ravi, Kavita</creator><creator>Somenzi, Fabio</creator><general>Springer Berlin / Heidelberg</general><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>FFUUA</scope><scope>IQODW</scope></search><sort><creationdate>2004</creationdate><title>Minimal Assignments for Bounded Model Checking</title><author>Ravi, Kavita ; Somenzi, Fabio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-27164ded40e8b89fe1369118fc22a1ee1a50b88e0ffda81465deb860972773a53</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applied sciences</topic><topic>Boolean Formula</topic><topic>Computer science; control theory; systems</topic><topic>Conjunctive Normal Form</topic><topic>Exact sciences and technology</topic><topic>Partial Assignment</topic><topic>Satisfying Assignment</topic><topic>Software</topic><topic>Software engineering</topic><topic>Unit Clause</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ravi, Kavita</creatorcontrib><creatorcontrib>Somenzi, Fabio</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ravi, Kavita</au><au>Somenzi, Fabio</au><au>Jensen, Kurt</au><au>Podelski, Andreas</au><au>Podelski, Andreas</au><au>Jensen, Kurt</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Minimal Assignments for Bounded Model Checking</atitle><btitle>Lecture notes in computer science</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2004</date><risdate>2004</risdate><volume>2988</volume><spage>31</spage><epage>45</epage><pages>31-45</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>354021299X</isbn><isbn>9783540212997</isbn><eisbn>3540247300</eisbn><eisbn>9783540247302</eisbn><abstract>A traditional counterexample to a linear-time safety property shows the values of all signals at all times prior to the error. However, some signals may not be critical to causing the failure. A succinct explanation may help human understanding as well as speed up algorithms that have to analyze many such traces. In Bounded Model Checking (BMC), a counterexample is constructed from a satisfying assignment to a Boolean formula, typically in CNF. Modern SAT solvers usually assign values to all variables when the input formula is satisfiable. Deriving minimal satisfying assignments from such complete assignments does not lead to concise explanations of counterexamples because of how CNF formulae are derived from the models. Hence, we formulate the extraction of a succinct counterexample as the problem of finding a minimal assignment that, together with the Boolean formula describing the model, implies an objective. We present a two-stage algorithm for this problem, such that the result of each stage contributes to identify the “interesting” events that cause the failure. We demonstrate the effectiveness of our approach with an example and with experimental results.</abstract><cop>Germany</cop><pub>Springer Berlin / Heidelberg</pub><doi>10.1007/978-3-540-24730-2_3</doi><oclcid>934979870</oclcid><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Lecture notes in computer science, 2004, Vol.2988, p.31-45
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_15759056
source Springer Books
subjects Applied sciences
Boolean Formula
Computer science
control theory
systems
Conjunctive Normal Form
Exact sciences and technology
Partial Assignment
Satisfying Assignment
Software
Software engineering
Unit Clause
title Minimal Assignments for Bounded Model Checking
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T04%3A29%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Minimal%20Assignments%20for%20Bounded%20Model%20Checking&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=Ravi,%20Kavita&rft.date=2004&rft.volume=2988&rft.spage=31&rft.epage=45&rft.pages=31-45&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=354021299X&rft.isbn_list=9783540212997&rft_id=info:doi/10.1007/978-3-540-24730-2_3&rft_dat=%3Cproquest_pasca%3EEBC3087789_10_44%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540247300&rft.eisbn_list=9783540247302&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC3087789_10_44&rft_id=info:pmid/&rfr_iscdi=true