Extracting Landmarks with Data Mining Methods

The navigation task is a very demanding application for mobile users. The algorithms of present software solutions are based on the established methods of car navigation systems and thus exhibit some inherent disadvantages: findings in spatial cognition research have shown that human users need land...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Elias, Birgit
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 389
container_issue
container_start_page 375
container_title
container_volume
creator Elias, Birgit
description The navigation task is a very demanding application for mobile users. The algorithms of present software solutions are based on the established methods of car navigation systems and thus exhibit some inherent disadvantages: findings in spatial cognition research have shown that human users need landmarks for an easy and successful wayfinding. Typically, however, an object is not a landmark per se, but can be one relative to its environment. Unfortunately, these objects are not part of route guidance information systems at the moment. Therefore, it is an aim of research to make landmarks for routing instructions available. In this paper we focus on a method to automatically derive landmarks from existing spatial databases. Here a new approach is presented to investigate existing spatial databases and try to extract landmarks automatically by use of a knowledge discovery process and data mining methods. In this paper two different algorithms, the classification method ID3 and the clustering procedure Cobweb, are investigated, whether they are suitable for discovering landmarks.
doi_str_mv 10.1007/978-3-540-39923-0_25
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_15758965</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>15758965</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1945-c28984f6c8c29766e1d61b3dfe9863673eba7801ef84bb31a3848f74f89d70913</originalsourceid><addsrcrecordid>eNotkMtOwzAQRc1LopT-AYtsWBo8HsePJSrlIaViA2vLcew2tCRVHAn4e9yW2Yx0z9VodAi5AXYHjKl7ozRFWgpG0RiOlFlenpArzMkh4KdkAhKAIgpzdgScgdB4TiYMGadGCbwks5Q-WR7kUmmcELr4GQfnx7ZbFZXrmi83bFLx3Y7r4tGNrli23R4tw7jum3RNLqLbpjD731Py8bR4n7_Q6u35df5QUQ9GlNRzbbSI0mvPjZIyQCOhxiYGoyVKhaF2SjMIUYu6RnCohY5KRG0axQzglNwe7-5c8m4bB9f5Ntnd0Ob_fi2UqtRGlrnHj72UUbcKg637fpMsMLu3ZrM1izarsAdJdm8N_wCjg1jo</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Extracting Landmarks with Data Mining Methods</title><source>Springer Books</source><creator>Elias, Birgit</creator><contributor>Timpf, Sabine ; Kuhn, Walter ; Worboys, Michael F.</contributor><creatorcontrib>Elias, Birgit ; Timpf, Sabine ; Kuhn, Walter ; Worboys, Michael F.</creatorcontrib><description>The navigation task is a very demanding application for mobile users. The algorithms of present software solutions are based on the established methods of car navigation systems and thus exhibit some inherent disadvantages: findings in spatial cognition research have shown that human users need landmarks for an easy and successful wayfinding. Typically, however, an object is not a landmark per se, but can be one relative to its environment. Unfortunately, these objects are not part of route guidance information systems at the moment. Therefore, it is an aim of research to make landmarks for routing instructions available. In this paper we focus on a method to automatically derive landmarks from existing spatial databases. Here a new approach is presented to investigate existing spatial databases and try to extract landmarks automatically by use of a knowledge discovery process and data mining methods. In this paper two different algorithms, the classification method ID3 and the clustering procedure Cobweb, are investigated, whether they are suitable for discovering landmarks.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540201483</identifier><identifier>ISBN: 9783540201489</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540399232</identifier><identifier>EISBN: 9783540399230</identifier><identifier>DOI: 10.1007/978-3-540-39923-0_25</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Computer science; control theory; systems ; Data Mining ; Data Mining Method ; Exact sciences and technology ; Information systems. Data bases ; Memory organisation. Data processing ; Salient Object ; Software ; Spatial Data Mining ; Spatial Database</subject><ispartof>Lecture notes in computer science, 2003, p.375-389</ispartof><rights>Springer-Verlag Berlin Heidelberg 2003</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1945-c28984f6c8c29766e1d61b3dfe9863673eba7801ef84bb31a3848f74f89d70913</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/978-3-540-39923-0_25$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/978-3-540-39923-0_25$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4036,4037,27902,38232,41418,42487</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15758965$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Timpf, Sabine</contributor><contributor>Kuhn, Walter</contributor><contributor>Worboys, Michael F.</contributor><creatorcontrib>Elias, Birgit</creatorcontrib><title>Extracting Landmarks with Data Mining Methods</title><title>Lecture notes in computer science</title><description>The navigation task is a very demanding application for mobile users. The algorithms of present software solutions are based on the established methods of car navigation systems and thus exhibit some inherent disadvantages: findings in spatial cognition research have shown that human users need landmarks for an easy and successful wayfinding. Typically, however, an object is not a landmark per se, but can be one relative to its environment. Unfortunately, these objects are not part of route guidance information systems at the moment. Therefore, it is an aim of research to make landmarks for routing instructions available. In this paper we focus on a method to automatically derive landmarks from existing spatial databases. Here a new approach is presented to investigate existing spatial databases and try to extract landmarks automatically by use of a knowledge discovery process and data mining methods. In this paper two different algorithms, the classification method ID3 and the clustering procedure Cobweb, are investigated, whether they are suitable for discovering landmarks.</description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Data Mining</subject><subject>Data Mining Method</subject><subject>Exact sciences and technology</subject><subject>Information systems. Data bases</subject><subject>Memory organisation. Data processing</subject><subject>Salient Object</subject><subject>Software</subject><subject>Spatial Data Mining</subject><subject>Spatial Database</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540201483</isbn><isbn>9783540201489</isbn><isbn>3540399232</isbn><isbn>9783540399230</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2003</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkMtOwzAQRc1LopT-AYtsWBo8HsePJSrlIaViA2vLcew2tCRVHAn4e9yW2Yx0z9VodAi5AXYHjKl7ozRFWgpG0RiOlFlenpArzMkh4KdkAhKAIgpzdgScgdB4TiYMGadGCbwks5Q-WR7kUmmcELr4GQfnx7ZbFZXrmi83bFLx3Y7r4tGNrli23R4tw7jum3RNLqLbpjD731Py8bR4n7_Q6u35df5QUQ9GlNRzbbSI0mvPjZIyQCOhxiYGoyVKhaF2SjMIUYu6RnCohY5KRG0axQzglNwe7-5c8m4bB9f5Ntnd0Ob_fi2UqtRGlrnHj72UUbcKg637fpMsMLu3ZrM1izarsAdJdm8N_wCjg1jo</recordid><startdate>2003</startdate><enddate>2003</enddate><creator>Elias, Birgit</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2003</creationdate><title>Extracting Landmarks with Data Mining Methods</title><author>Elias, Birgit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1945-c28984f6c8c29766e1d61b3dfe9863673eba7801ef84bb31a3848f74f89d70913</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Data Mining</topic><topic>Data Mining Method</topic><topic>Exact sciences and technology</topic><topic>Information systems. Data bases</topic><topic>Memory organisation. Data processing</topic><topic>Salient Object</topic><topic>Software</topic><topic>Spatial Data Mining</topic><topic>Spatial Database</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elias, Birgit</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elias, Birgit</au><au>Timpf, Sabine</au><au>Kuhn, Walter</au><au>Worboys, Michael F.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Extracting Landmarks with Data Mining Methods</atitle><btitle>Lecture notes in computer science</btitle><date>2003</date><risdate>2003</risdate><spage>375</spage><epage>389</epage><pages>375-389</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540201483</isbn><isbn>9783540201489</isbn><eisbn>3540399232</eisbn><eisbn>9783540399230</eisbn><abstract>The navigation task is a very demanding application for mobile users. The algorithms of present software solutions are based on the established methods of car navigation systems and thus exhibit some inherent disadvantages: findings in spatial cognition research have shown that human users need landmarks for an easy and successful wayfinding. Typically, however, an object is not a landmark per se, but can be one relative to its environment. Unfortunately, these objects are not part of route guidance information systems at the moment. Therefore, it is an aim of research to make landmarks for routing instructions available. In this paper we focus on a method to automatically derive landmarks from existing spatial databases. Here a new approach is presented to investigate existing spatial databases and try to extract landmarks automatically by use of a knowledge discovery process and data mining methods. In this paper two different algorithms, the classification method ID3 and the clustering procedure Cobweb, are investigated, whether they are suitable for discovering landmarks.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/978-3-540-39923-0_25</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Lecture notes in computer science, 2003, p.375-389
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_15758965
source Springer Books
subjects Applied sciences
Computer science
control theory
systems
Data Mining
Data Mining Method
Exact sciences and technology
Information systems. Data bases
Memory organisation. Data processing
Salient Object
Software
Spatial Data Mining
Spatial Database
title Extracting Landmarks with Data Mining Methods
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T20%3A22%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Extracting%20Landmarks%20with%20Data%20Mining%20Methods&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=Elias,%20Birgit&rft.date=2003&rft.spage=375&rft.epage=389&rft.pages=375-389&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540201483&rft.isbn_list=9783540201489&rft_id=info:doi/10.1007/978-3-540-39923-0_25&rft_dat=%3Cpascalfrancis_sprin%3E15758965%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540399232&rft.eisbn_list=9783540399230&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true