Comparison of partitioning strategies for PDE solvers on multiblock grids

Different partitioning strategies for multiblock grids have been compared experimentally. The numerical experiments have been performed on a 512 processor Cray T3D using a compressible two dimensional Navier-Stokes solver. Some complementary results are made with an advection equation solver using a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Rantakokko, Jarmo
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 475
container_issue
container_start_page 468
container_title
container_volume
creator Rantakokko, Jarmo
description Different partitioning strategies for multiblock grids have been compared experimentally. The numerical experiments have been performed on a 512 processor Cray T3D using a compressible two dimensional Navier-Stokes solver. Some complementary results are made with an advection equation solver using a Cray T3E-900. The results show that the behavior of the different parallelization strategies depends very much on the number of subgrids and their sizes as well as the number of available processors. In order to get optimal performance for a certain problem and processor configuration, the partitioning strategy must be chosen with regard to these aspects. Our results give guidelines for this.
doi_str_mv 10.1007/BFb0095370
format Conference Proceeding
fullrecord <record><control><sourceid>swepub_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_1574011</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_DiVA_org_uu_27327</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1687-28e4489862745184365e67788f6c65d31d0bc9d4b9f1297e5f7efa074fa9bb0b3</originalsourceid><addsrcrecordid>eNpFkEtLAzEUheMLrLUbf0EWLgQZTSavybL2oYWCLtRtSKbJEDudDMmM4r93pEUvF-6B892zOABcYXSHERL3D0uDkGREoCNwQRhFVOYcs2MwwhzjjBAqT_YGZxRTcgpGiKA8k4KSczBJ6QMNQ3JMmByB1SzsWh19Cg0MDg6y850PjW8qmLqoO1t5m6ALEb7MFzCF-tPGBAd619edN3Uot7CKfpMuwZnTdbKTwx2Dt-XidfaUrZ8fV7PpOmsxL0SWF5bSQhY8F5ThghLOLBeiKBwvOdsQvEGmlBtqpMO5FJY5YZ1GgjotjUGGjMHtPjd92bY3qo1-p-O3CtqruX-fqhAr1fcqF2TYMbje061Opa5d1E3p098TZoIijAfs5hA6OE1lozIhbJPCSP2Wrv5LJz-cfG68</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Comparison of partitioning strategies for PDE solvers on multiblock grids</title><source>Springer Books</source><creator>Rantakokko, Jarmo</creator><contributor>Waśniewski, Jerzy ; Dongarra, Jack ; Elmroth, Erik ; Kågström, Bo</contributor><creatorcontrib>Rantakokko, Jarmo ; Waśniewski, Jerzy ; Dongarra, Jack ; Elmroth, Erik ; Kågström, Bo</creatorcontrib><description>Different partitioning strategies for multiblock grids have been compared experimentally. The numerical experiments have been performed on a 512 processor Cray T3D using a compressible two dimensional Navier-Stokes solver. Some complementary results are made with an advection equation solver using a Cray T3E-900. The results show that the behavior of the different parallelization strategies depends very much on the number of subgrids and their sizes as well as the number of available processors. In order to get optimal performance for a certain problem and processor configuration, the partitioning strategy must be chosen with regard to these aspects. Our results give guidelines for this.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540654143</identifier><identifier>ISBN: 9783540654148</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540492615</identifier><identifier>EISBN: 9783540492610</identifier><identifier>DOI: 10.1007/BFb0095370</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Block Partitioning ; Composite Grid ; Computer science; control theory; systems ; Exact sciences and technology ; Load Balance ; Miscellaneous ; Parallelization Strategy ; Partitioning Strategy ; Software</subject><ispartof>Applied Parallel Computing, 2006, p.468-475</ispartof><rights>Springer-Verlag Berlin Heidelberg 1998</rights><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/BFb0095370$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/BFb0095370$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,881,4036,4037,27902,38232,41418,42487</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1574011$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-27327$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><contributor>Waśniewski, Jerzy</contributor><contributor>Dongarra, Jack</contributor><contributor>Elmroth, Erik</contributor><contributor>Kågström, Bo</contributor><creatorcontrib>Rantakokko, Jarmo</creatorcontrib><title>Comparison of partitioning strategies for PDE solvers on multiblock grids</title><title>Applied Parallel Computing</title><description>Different partitioning strategies for multiblock grids have been compared experimentally. The numerical experiments have been performed on a 512 processor Cray T3D using a compressible two dimensional Navier-Stokes solver. Some complementary results are made with an advection equation solver using a Cray T3E-900. The results show that the behavior of the different parallelization strategies depends very much on the number of subgrids and their sizes as well as the number of available processors. In order to get optimal performance for a certain problem and processor configuration, the partitioning strategy must be chosen with regard to these aspects. Our results give guidelines for this.</description><subject>Applied sciences</subject><subject>Block Partitioning</subject><subject>Composite Grid</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Load Balance</subject><subject>Miscellaneous</subject><subject>Parallelization Strategy</subject><subject>Partitioning Strategy</subject><subject>Software</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540654143</isbn><isbn>9783540654148</isbn><isbn>3540492615</isbn><isbn>9783540492610</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpFkEtLAzEUheMLrLUbf0EWLgQZTSavybL2oYWCLtRtSKbJEDudDMmM4r93pEUvF-6B892zOABcYXSHERL3D0uDkGREoCNwQRhFVOYcs2MwwhzjjBAqT_YGZxRTcgpGiKA8k4KSczBJ6QMNQ3JMmByB1SzsWh19Cg0MDg6y850PjW8qmLqoO1t5m6ALEb7MFzCF-tPGBAd619edN3Uot7CKfpMuwZnTdbKTwx2Dt-XidfaUrZ8fV7PpOmsxL0SWF5bSQhY8F5ThghLOLBeiKBwvOdsQvEGmlBtqpMO5FJY5YZ1GgjotjUGGjMHtPjd92bY3qo1-p-O3CtqruX-fqhAr1fcqF2TYMbje061Opa5d1E3p098TZoIijAfs5hA6OE1lozIhbJPCSP2Wrv5LJz-cfG68</recordid><startdate>20061020</startdate><enddate>20061020</enddate><creator>Rantakokko, Jarmo</creator><general>Springer Berlin Heidelberg</general><general>Springer-Verlag</general><scope>IQODW</scope><scope>ADTPV</scope><scope>BNKNJ</scope><scope>DF2</scope></search><sort><creationdate>20061020</creationdate><title>Comparison of partitioning strategies for PDE solvers on multiblock grids</title><author>Rantakokko, Jarmo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1687-28e4489862745184365e67788f6c65d31d0bc9d4b9f1297e5f7efa074fa9bb0b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Block Partitioning</topic><topic>Composite Grid</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Load Balance</topic><topic>Miscellaneous</topic><topic>Parallelization Strategy</topic><topic>Partitioning Strategy</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rantakokko, Jarmo</creatorcontrib><collection>Pascal-Francis</collection><collection>SwePub</collection><collection>SwePub Conference</collection><collection>SWEPUB Uppsala universitet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rantakokko, Jarmo</au><au>Waśniewski, Jerzy</au><au>Dongarra, Jack</au><au>Elmroth, Erik</au><au>Kågström, Bo</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Comparison of partitioning strategies for PDE solvers on multiblock grids</atitle><btitle>Applied Parallel Computing</btitle><date>2006-10-20</date><risdate>2006</risdate><spage>468</spage><epage>475</epage><pages>468-475</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540654143</isbn><isbn>9783540654148</isbn><eisbn>3540492615</eisbn><eisbn>9783540492610</eisbn><abstract>Different partitioning strategies for multiblock grids have been compared experimentally. The numerical experiments have been performed on a 512 processor Cray T3D using a compressible two dimensional Navier-Stokes solver. Some complementary results are made with an advection equation solver using a Cray T3E-900. The results show that the behavior of the different parallelization strategies depends very much on the number of subgrids and their sizes as well as the number of available processors. In order to get optimal performance for a certain problem and processor configuration, the partitioning strategy must be chosen with regard to these aspects. Our results give guidelines for this.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/BFb0095370</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Applied Parallel Computing, 2006, p.468-475
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_1574011
source Springer Books
subjects Applied sciences
Block Partitioning
Composite Grid
Computer science
control theory
systems
Exact sciences and technology
Load Balance
Miscellaneous
Parallelization Strategy
Partitioning Strategy
Software
title Comparison of partitioning strategies for PDE solvers on multiblock grids
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T19%3A40%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-swepub_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Comparison%20of%20partitioning%20strategies%20for%20PDE%20solvers%20on%20multiblock%20grids&rft.btitle=Applied%20Parallel%20Computing&rft.au=Rantakokko,%20Jarmo&rft.date=2006-10-20&rft.spage=468&rft.epage=475&rft.pages=468-475&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540654143&rft.isbn_list=9783540654148&rft_id=info:doi/10.1007/BFb0095370&rft_dat=%3Cswepub_pasca%3Eoai_DiVA_org_uu_27327%3C/swepub_pasca%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540492615&rft.eisbn_list=9783540492610&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true