kcnfs: An Efficient Solver for Random k-SAT Formulae
In this paper we generalize a heuristic that we have introduced previously for solving efficiently random 3-SAT formulae. Our heuristic is based on the notion of backbone, searching variables belonging to local backbones of a formula. This heuristic was limited to 3-SAT formulae. In this paper we ge...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 501 |
---|---|
container_issue | |
container_start_page | 486 |
container_title | |
container_volume | 2919 |
creator | Dequen, Gilles Dubois, Olivier |
description | In this paper we generalize a heuristic that we have introduced previously for solving efficiently random 3-SAT formulae. Our heuristic is based on the notion of backbone, searching variables belonging to local backbones of a formula. This heuristic was limited to 3-SAT formulae. In this paper we generalize this heuristic by introducing a sub-heuristic called a re-normalization heuristic in order to handle formulae with various clause lengths and particularly hard random k-sat formulae with k ≥ 3 . We implemented this new general heuristic in our previous program cnfs, a classical dpll algorithm, renamed kcnfs. We give experimental results which show that kcnfs outperforms by far the best current complete solvers on any random k-SAT formula for k ≥ 3. |
doi_str_mv | 10.1007/978-3-540-24605-3_36 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_pascalfrancis_primary_15735477</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC3088286_39_497</sourcerecordid><originalsourceid>FETCH-LOGICAL-h306t-efe36be35e3c6592c2a74b18675ea00f88c7a90b74f8cf3f61e167190c75bdae3</originalsourceid><addsrcrecordid>eNo9kM1PGzEQxV3aoqaU_6CHvXDowe14x5_cIsRHpUiVCj2PvMYmSza7wQ5I_e9xSMRIo5HevPcOP8a-C_gpAMwvZyxHriTwVmpQHAn1B_YVq_Im4BGbCS0ER5Tu4-EBVgn7ic0AoeXOSDxmM6dQ67ryCzst5RHqtMqCMTMmV2FM5byZj81lSn3o47htbqfhJeYmTbn568f7ad2s-O38rrma8vp58PEb-5z8UOLp4Z6wf1eXdxc3fPHn-vfFfMGXCHrLY4qou4gqYtDKtaH1RnbCaqOiB0jWBuMddEYmGxImLaLQRjgIRnX3PuIJ-7HvXfqBNrlf-_yfJt_TzXxBOw3ASqWtfRHVe7b3bnwJfkjZj6Ev7ymhTMVjTPW1e1-pr_EhZuqmaVVIAO2gU4VOSJUkvTGmHfQawkN5np6eY9lS3KVChZX9EJZ-s425EIK1rdWEjqQz-ArT53zg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>EBC3088286_39_497</pqid></control><display><type>conference_proceeding</type><title>kcnfs: An Efficient Solver for Random k-SAT Formulae</title><source>Springer Books</source><creator>Dequen, Gilles ; Dubois, Olivier</creator><contributor>Giunchiglia, Enrico ; Tacchella, Armando ; Giunchiglia, Enrico ; Tacchella, Armando</contributor><creatorcontrib>Dequen, Gilles ; Dubois, Olivier ; Giunchiglia, Enrico ; Tacchella, Armando ; Giunchiglia, Enrico ; Tacchella, Armando</creatorcontrib><description>In this paper we generalize a heuristic that we have introduced previously for solving efficiently random 3-SAT formulae. Our heuristic is based on the notion of backbone, searching variables belonging to local backbones of a formula. This heuristic was limited to 3-SAT formulae. In this paper we generalize this heuristic by introducing a sub-heuristic called a re-normalization heuristic in order to handle formulae with various clause lengths and particularly hard random k-sat formulae with k ≥ 3 . We implemented this new general heuristic in our previous program cnfs, a classical dpll algorithm, renamed kcnfs. We give experimental results which show that kcnfs outperforms by far the best current complete solvers on any random k-SAT formula for k ≥ 3.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540208518</identifier><identifier>ISBN: 9783540208518</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540246053</identifier><identifier>EISBN: 9783540246053</identifier><identifier>DOI: 10.1007/978-3-540-24605-3_36</identifier><identifier>OCLC: 953665364</identifier><identifier>LCCallNum: QA8.9-10.3</identifier><language>eng</language><publisher>Germany: Springer Berlin / Heidelberg</publisher><subject>Applied sciences ; Artificial Intelligence ; Basic Heuristic ; Classical Heuristic ; Computer Science ; Computer science; control theory; systems ; Current Node ; Exact sciences and technology ; General Heuristic ; Logical, boolean and switching functions ; Theoretical computing ; Truth Assignment</subject><ispartof>Lecture notes in computer science, 2004, Vol.2919, p.486-501</ispartof><rights>Springer-Verlag Berlin Heidelberg 2004</rights><rights>2004 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-7497-1182</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/3088286-l.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/978-3-540-24605-3_36$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/978-3-540-24605-3_36$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,885,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15735477$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00845688$$DView record in HAL$$Hfree_for_read</backlink></links><search><contributor>Giunchiglia, Enrico</contributor><contributor>Tacchella, Armando</contributor><contributor>Giunchiglia, Enrico</contributor><contributor>Tacchella, Armando</contributor><creatorcontrib>Dequen, Gilles</creatorcontrib><creatorcontrib>Dubois, Olivier</creatorcontrib><title>kcnfs: An Efficient Solver for Random k-SAT Formulae</title><title>Lecture notes in computer science</title><description>In this paper we generalize a heuristic that we have introduced previously for solving efficiently random 3-SAT formulae. Our heuristic is based on the notion of backbone, searching variables belonging to local backbones of a formula. This heuristic was limited to 3-SAT formulae. In this paper we generalize this heuristic by introducing a sub-heuristic called a re-normalization heuristic in order to handle formulae with various clause lengths and particularly hard random k-sat formulae with k ≥ 3 . We implemented this new general heuristic in our previous program cnfs, a classical dpll algorithm, renamed kcnfs. We give experimental results which show that kcnfs outperforms by far the best current complete solvers on any random k-SAT formula for k ≥ 3.</description><subject>Applied sciences</subject><subject>Artificial Intelligence</subject><subject>Basic Heuristic</subject><subject>Classical Heuristic</subject><subject>Computer Science</subject><subject>Computer science; control theory; systems</subject><subject>Current Node</subject><subject>Exact sciences and technology</subject><subject>General Heuristic</subject><subject>Logical, boolean and switching functions</subject><subject>Theoretical computing</subject><subject>Truth Assignment</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540208518</isbn><isbn>9783540208518</isbn><isbn>3540246053</isbn><isbn>9783540246053</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2004</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNo9kM1PGzEQxV3aoqaU_6CHvXDowe14x5_cIsRHpUiVCj2PvMYmSza7wQ5I_e9xSMRIo5HevPcOP8a-C_gpAMwvZyxHriTwVmpQHAn1B_YVq_Im4BGbCS0ER5Tu4-EBVgn7ic0AoeXOSDxmM6dQ67ryCzst5RHqtMqCMTMmV2FM5byZj81lSn3o47htbqfhJeYmTbn568f7ad2s-O38rrma8vp58PEb-5z8UOLp4Z6wf1eXdxc3fPHn-vfFfMGXCHrLY4qou4gqYtDKtaH1RnbCaqOiB0jWBuMddEYmGxImLaLQRjgIRnX3PuIJ-7HvXfqBNrlf-_yfJt_TzXxBOw3ASqWtfRHVe7b3bnwJfkjZj6Ev7ymhTMVjTPW1e1-pr_EhZuqmaVVIAO2gU4VOSJUkvTGmHfQawkN5np6eY9lS3KVChZX9EJZ-s425EIK1rdWEjqQz-ArT53zg</recordid><startdate>20040101</startdate><enddate>20040101</enddate><creator>Dequen, Gilles</creator><creator>Dubois, Olivier</creator><general>Springer Berlin / Heidelberg</general><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>FFUUA</scope><scope>IQODW</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-7497-1182</orcidid></search><sort><creationdate>20040101</creationdate><title>kcnfs: An Efficient Solver for Random k-SAT Formulae</title><author>Dequen, Gilles ; Dubois, Olivier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h306t-efe36be35e3c6592c2a74b18675ea00f88c7a90b74f8cf3f61e167190c75bdae3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applied sciences</topic><topic>Artificial Intelligence</topic><topic>Basic Heuristic</topic><topic>Classical Heuristic</topic><topic>Computer Science</topic><topic>Computer science; control theory; systems</topic><topic>Current Node</topic><topic>Exact sciences and technology</topic><topic>General Heuristic</topic><topic>Logical, boolean and switching functions</topic><topic>Theoretical computing</topic><topic>Truth Assignment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dequen, Gilles</creatorcontrib><creatorcontrib>Dubois, Olivier</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection><collection>Pascal-Francis</collection><collection>Hyper Article en Ligne (HAL)</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dequen, Gilles</au><au>Dubois, Olivier</au><au>Giunchiglia, Enrico</au><au>Tacchella, Armando</au><au>Giunchiglia, Enrico</au><au>Tacchella, Armando</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>kcnfs: An Efficient Solver for Random k-SAT Formulae</atitle><btitle>Lecture notes in computer science</btitle><date>2004-01-01</date><risdate>2004</risdate><volume>2919</volume><spage>486</spage><epage>501</epage><pages>486-501</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540208518</isbn><isbn>9783540208518</isbn><eisbn>3540246053</eisbn><eisbn>9783540246053</eisbn><abstract>In this paper we generalize a heuristic that we have introduced previously for solving efficiently random 3-SAT formulae. Our heuristic is based on the notion of backbone, searching variables belonging to local backbones of a formula. This heuristic was limited to 3-SAT formulae. In this paper we generalize this heuristic by introducing a sub-heuristic called a re-normalization heuristic in order to handle formulae with various clause lengths and particularly hard random k-sat formulae with k ≥ 3 . We implemented this new general heuristic in our previous program cnfs, a classical dpll algorithm, renamed kcnfs. We give experimental results which show that kcnfs outperforms by far the best current complete solvers on any random k-SAT formula for k ≥ 3.</abstract><cop>Germany</cop><pub>Springer Berlin / Heidelberg</pub><doi>10.1007/978-3-540-24605-3_36</doi><oclcid>953665364</oclcid><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-7497-1182</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Lecture notes in computer science, 2004, Vol.2919, p.486-501 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_15735477 |
source | Springer Books |
subjects | Applied sciences Artificial Intelligence Basic Heuristic Classical Heuristic Computer Science Computer science control theory systems Current Node Exact sciences and technology General Heuristic Logical, boolean and switching functions Theoretical computing Truth Assignment |
title | kcnfs: An Efficient Solver for Random k-SAT Formulae |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T12%3A29%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=kcnfs:%20An%20Efficient%20Solver%20for%20Random%20k-SAT%20Formulae&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=Dequen,%20Gilles&rft.date=2004-01-01&rft.volume=2919&rft.spage=486&rft.epage=501&rft.pages=486-501&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540208518&rft.isbn_list=9783540208518&rft_id=info:doi/10.1007/978-3-540-24605-3_36&rft_dat=%3Cproquest_hal_p%3EEBC3088286_39_497%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540246053&rft.eisbn_list=9783540246053&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC3088286_39_497&rft_id=info:pmid/&rfr_iscdi=true |