kcnfs: An Efficient Solver for Random k-SAT Formulae

In this paper we generalize a heuristic that we have introduced previously for solving efficiently random 3-SAT formulae. Our heuristic is based on the notion of backbone, searching variables belonging to local backbones of a formula. This heuristic was limited to 3-SAT formulae. In this paper we ge...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Dequen, Gilles, Dubois, Olivier
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 501
container_issue
container_start_page 486
container_title
container_volume 2919
creator Dequen, Gilles
Dubois, Olivier
description In this paper we generalize a heuristic that we have introduced previously for solving efficiently random 3-SAT formulae. Our heuristic is based on the notion of backbone, searching variables belonging to local backbones of a formula. This heuristic was limited to 3-SAT formulae. In this paper we generalize this heuristic by introducing a sub-heuristic called a re-normalization heuristic in order to handle formulae with various clause lengths and particularly hard random k-sat formulae with k ≥ 3 . We implemented this new general heuristic in our previous program cnfs, a classical dpll algorithm, renamed kcnfs. We give experimental results which show that kcnfs outperforms by far the best current complete solvers on any random k-SAT formula for k ≥ 3.
doi_str_mv 10.1007/978-3-540-24605-3_36
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_pascalfrancis_primary_15735477</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC3088286_39_497</sourcerecordid><originalsourceid>FETCH-LOGICAL-h306t-efe36be35e3c6592c2a74b18675ea00f88c7a90b74f8cf3f61e167190c75bdae3</originalsourceid><addsrcrecordid>eNo9kM1PGzEQxV3aoqaU_6CHvXDowe14x5_cIsRHpUiVCj2PvMYmSza7wQ5I_e9xSMRIo5HevPcOP8a-C_gpAMwvZyxHriTwVmpQHAn1B_YVq_Im4BGbCS0ER5Tu4-EBVgn7ic0AoeXOSDxmM6dQ67ryCzst5RHqtMqCMTMmV2FM5byZj81lSn3o47htbqfhJeYmTbn568f7ad2s-O38rrma8vp58PEb-5z8UOLp4Z6wf1eXdxc3fPHn-vfFfMGXCHrLY4qou4gqYtDKtaH1RnbCaqOiB0jWBuMddEYmGxImLaLQRjgIRnX3PuIJ-7HvXfqBNrlf-_yfJt_TzXxBOw3ASqWtfRHVe7b3bnwJfkjZj6Ev7ymhTMVjTPW1e1-pr_EhZuqmaVVIAO2gU4VOSJUkvTGmHfQawkN5np6eY9lS3KVChZX9EJZ-s425EIK1rdWEjqQz-ArT53zg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>EBC3088286_39_497</pqid></control><display><type>conference_proceeding</type><title>kcnfs: An Efficient Solver for Random k-SAT Formulae</title><source>Springer Books</source><creator>Dequen, Gilles ; Dubois, Olivier</creator><contributor>Giunchiglia, Enrico ; Tacchella, Armando ; Giunchiglia, Enrico ; Tacchella, Armando</contributor><creatorcontrib>Dequen, Gilles ; Dubois, Olivier ; Giunchiglia, Enrico ; Tacchella, Armando ; Giunchiglia, Enrico ; Tacchella, Armando</creatorcontrib><description>In this paper we generalize a heuristic that we have introduced previously for solving efficiently random 3-SAT formulae. Our heuristic is based on the notion of backbone, searching variables belonging to local backbones of a formula. This heuristic was limited to 3-SAT formulae. In this paper we generalize this heuristic by introducing a sub-heuristic called a re-normalization heuristic in order to handle formulae with various clause lengths and particularly hard random k-sat formulae with k ≥ 3 . We implemented this new general heuristic in our previous program cnfs, a classical dpll algorithm, renamed kcnfs. We give experimental results which show that kcnfs outperforms by far the best current complete solvers on any random k-SAT formula for k ≥ 3.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540208518</identifier><identifier>ISBN: 9783540208518</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540246053</identifier><identifier>EISBN: 9783540246053</identifier><identifier>DOI: 10.1007/978-3-540-24605-3_36</identifier><identifier>OCLC: 953665364</identifier><identifier>LCCallNum: QA8.9-10.3</identifier><language>eng</language><publisher>Germany: Springer Berlin / Heidelberg</publisher><subject>Applied sciences ; Artificial Intelligence ; Basic Heuristic ; Classical Heuristic ; Computer Science ; Computer science; control theory; systems ; Current Node ; Exact sciences and technology ; General Heuristic ; Logical, boolean and switching functions ; Theoretical computing ; Truth Assignment</subject><ispartof>Lecture notes in computer science, 2004, Vol.2919, p.486-501</ispartof><rights>Springer-Verlag Berlin Heidelberg 2004</rights><rights>2004 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-7497-1182</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/3088286-l.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/978-3-540-24605-3_36$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/978-3-540-24605-3_36$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,885,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15735477$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00845688$$DView record in HAL$$Hfree_for_read</backlink></links><search><contributor>Giunchiglia, Enrico</contributor><contributor>Tacchella, Armando</contributor><contributor>Giunchiglia, Enrico</contributor><contributor>Tacchella, Armando</contributor><creatorcontrib>Dequen, Gilles</creatorcontrib><creatorcontrib>Dubois, Olivier</creatorcontrib><title>kcnfs: An Efficient Solver for Random k-SAT Formulae</title><title>Lecture notes in computer science</title><description>In this paper we generalize a heuristic that we have introduced previously for solving efficiently random 3-SAT formulae. Our heuristic is based on the notion of backbone, searching variables belonging to local backbones of a formula. This heuristic was limited to 3-SAT formulae. In this paper we generalize this heuristic by introducing a sub-heuristic called a re-normalization heuristic in order to handle formulae with various clause lengths and particularly hard random k-sat formulae with k ≥ 3 . We implemented this new general heuristic in our previous program cnfs, a classical dpll algorithm, renamed kcnfs. We give experimental results which show that kcnfs outperforms by far the best current complete solvers on any random k-SAT formula for k ≥ 3.</description><subject>Applied sciences</subject><subject>Artificial Intelligence</subject><subject>Basic Heuristic</subject><subject>Classical Heuristic</subject><subject>Computer Science</subject><subject>Computer science; control theory; systems</subject><subject>Current Node</subject><subject>Exact sciences and technology</subject><subject>General Heuristic</subject><subject>Logical, boolean and switching functions</subject><subject>Theoretical computing</subject><subject>Truth Assignment</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540208518</isbn><isbn>9783540208518</isbn><isbn>3540246053</isbn><isbn>9783540246053</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2004</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNo9kM1PGzEQxV3aoqaU_6CHvXDowe14x5_cIsRHpUiVCj2PvMYmSza7wQ5I_e9xSMRIo5HevPcOP8a-C_gpAMwvZyxHriTwVmpQHAn1B_YVq_Im4BGbCS0ER5Tu4-EBVgn7ic0AoeXOSDxmM6dQ67ryCzst5RHqtMqCMTMmV2FM5byZj81lSn3o47htbqfhJeYmTbn568f7ad2s-O38rrma8vp58PEb-5z8UOLp4Z6wf1eXdxc3fPHn-vfFfMGXCHrLY4qou4gqYtDKtaH1RnbCaqOiB0jWBuMddEYmGxImLaLQRjgIRnX3PuIJ-7HvXfqBNrlf-_yfJt_TzXxBOw3ASqWtfRHVe7b3bnwJfkjZj6Ev7ymhTMVjTPW1e1-pr_EhZuqmaVVIAO2gU4VOSJUkvTGmHfQawkN5np6eY9lS3KVChZX9EJZ-s425EIK1rdWEjqQz-ArT53zg</recordid><startdate>20040101</startdate><enddate>20040101</enddate><creator>Dequen, Gilles</creator><creator>Dubois, Olivier</creator><general>Springer Berlin / Heidelberg</general><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>FFUUA</scope><scope>IQODW</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-7497-1182</orcidid></search><sort><creationdate>20040101</creationdate><title>kcnfs: An Efficient Solver for Random k-SAT Formulae</title><author>Dequen, Gilles ; Dubois, Olivier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h306t-efe36be35e3c6592c2a74b18675ea00f88c7a90b74f8cf3f61e167190c75bdae3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applied sciences</topic><topic>Artificial Intelligence</topic><topic>Basic Heuristic</topic><topic>Classical Heuristic</topic><topic>Computer Science</topic><topic>Computer science; control theory; systems</topic><topic>Current Node</topic><topic>Exact sciences and technology</topic><topic>General Heuristic</topic><topic>Logical, boolean and switching functions</topic><topic>Theoretical computing</topic><topic>Truth Assignment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dequen, Gilles</creatorcontrib><creatorcontrib>Dubois, Olivier</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection><collection>Pascal-Francis</collection><collection>Hyper Article en Ligne (HAL)</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dequen, Gilles</au><au>Dubois, Olivier</au><au>Giunchiglia, Enrico</au><au>Tacchella, Armando</au><au>Giunchiglia, Enrico</au><au>Tacchella, Armando</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>kcnfs: An Efficient Solver for Random k-SAT Formulae</atitle><btitle>Lecture notes in computer science</btitle><date>2004-01-01</date><risdate>2004</risdate><volume>2919</volume><spage>486</spage><epage>501</epage><pages>486-501</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540208518</isbn><isbn>9783540208518</isbn><eisbn>3540246053</eisbn><eisbn>9783540246053</eisbn><abstract>In this paper we generalize a heuristic that we have introduced previously for solving efficiently random 3-SAT formulae. Our heuristic is based on the notion of backbone, searching variables belonging to local backbones of a formula. This heuristic was limited to 3-SAT formulae. In this paper we generalize this heuristic by introducing a sub-heuristic called a re-normalization heuristic in order to handle formulae with various clause lengths and particularly hard random k-sat formulae with k ≥ 3 . We implemented this new general heuristic in our previous program cnfs, a classical dpll algorithm, renamed kcnfs. We give experimental results which show that kcnfs outperforms by far the best current complete solvers on any random k-SAT formula for k ≥ 3.</abstract><cop>Germany</cop><pub>Springer Berlin / Heidelberg</pub><doi>10.1007/978-3-540-24605-3_36</doi><oclcid>953665364</oclcid><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-7497-1182</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Lecture notes in computer science, 2004, Vol.2919, p.486-501
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_15735477
source Springer Books
subjects Applied sciences
Artificial Intelligence
Basic Heuristic
Classical Heuristic
Computer Science
Computer science
control theory
systems
Current Node
Exact sciences and technology
General Heuristic
Logical, boolean and switching functions
Theoretical computing
Truth Assignment
title kcnfs: An Efficient Solver for Random k-SAT Formulae
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T12%3A29%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=kcnfs:%20An%20Efficient%20Solver%20for%20Random%20k-SAT%20Formulae&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=Dequen,%20Gilles&rft.date=2004-01-01&rft.volume=2919&rft.spage=486&rft.epage=501&rft.pages=486-501&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540208518&rft.isbn_list=9783540208518&rft_id=info:doi/10.1007/978-3-540-24605-3_36&rft_dat=%3Cproquest_hal_p%3EEBC3088286_39_497%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540246053&rft.eisbn_list=9783540246053&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC3088286_39_497&rft_id=info:pmid/&rfr_iscdi=true