Probabilistic Points-to Analysis
Information gathered by the existing pointer analysis techniques can be classified as must aliases or definitely-points-to relationships, which hold for all executions, and may aliases or possibly-points-to relationships, which might hold for some executions. Such information does not provide quanti...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 305 |
---|---|
container_issue | |
container_start_page | 290 |
container_title | |
container_volume | 2624 |
creator | Hwang, Yuan-Shin Chen, Peng-Sheng Lee, Jenq Kuen Ju, Roy Dz-Ching |
description | Information gathered by the existing pointer analysis techniques can be classified as must aliases or definitely-points-to relationships, which hold for all executions, and may aliases or possibly-points-to relationships, which might hold for some executions. Such information does not provide quantitative descriptions to tell how likely the conditions will hold for the executions, which are needed for modern compiler optimizations, and thus has hindered compilers from more aggressive optimizations. This paper addresses this issue by proposing a probabilistic points-to analysis technique to compute the probability of each points-to relationship. Initial experiments are done by incorporating the probabilistic data flow analysis algorithm into SUIF and MachSUIF, and preliminary experimental results show the probability distributions of points-to relationships in several benchmark programs. This work presents a major enhancement for pointer analysis to keep up with modern compiler optimizations. |
doi_str_mv | 10.1007/3-540-35767-X_19 |
format | Book Chapter |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_15735424</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC3071543_25_299</sourcerecordid><originalsourceid>FETCH-LOGICAL-p268t-f9588ae718435095ca05a589f837150931f0827fb5e7e2c026875b22d19256a13</originalsourceid><addsrcrecordid>eNotUMtOwzAQNE8RSu8ce-HosvbasX2sqvKQKtEDSL1ZTnAgEJJgh0P_HqftXlaa2RnNDiG3DOYMQN0jlQIoSpUrurXMnJBrTMge2J6SjOWMUURhzsjUKD1yIIAbPCcZIHBqlMBLkuW54IoZIa_INMYvSINcIEBGZpvQFa6omzoOdTnbdHU7RDp0s0Xrml2s4w25qFwT_fS4J-TtYfW6fKLrl8fn5WJNe57rgVZGau28YlqgBCNLB9JJbSqNiiUAWQWaq6qQXnleQhIpWXD-zgyXuWM4IXcH397F0jVVcG1ZR9uH-seFnWVSpfdS6AmZH-5iotoPH2zRdd_RMrBjZxZtasHuK7JjZ0mAR-PQ_f75OFg_KkrfDsE15afrBx-iRUg5BVouLTcG_wFdbGaS</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC3071543_25_299</pqid></control><display><type>book_chapter</type><title>Probabilistic Points-to Analysis</title><source>Springer Books</source><creator>Hwang, Yuan-Shin ; Chen, Peng-Sheng ; Lee, Jenq Kuen ; Ju, Roy Dz-Ching</creator><contributor>Dietz, Henry Gordon</contributor><creatorcontrib>Hwang, Yuan-Shin ; Chen, Peng-Sheng ; Lee, Jenq Kuen ; Ju, Roy Dz-Ching ; Dietz, Henry Gordon</creatorcontrib><description>Information gathered by the existing pointer analysis techniques can be classified as must aliases or definitely-points-to relationships, which hold for all executions, and may aliases or possibly-points-to relationships, which might hold for some executions. Such information does not provide quantitative descriptions to tell how likely the conditions will hold for the executions, which are needed for modern compiler optimizations, and thus has hindered compilers from more aggressive optimizations. This paper addresses this issue by proposing a probabilistic points-to analysis technique to compute the probability of each points-to relationship. Initial experiments are done by incorporating the probabilistic data flow analysis algorithm into SUIF and MachSUIF, and preliminary experimental results show the probability distributions of points-to relationships in several benchmark programs. This work presents a major enhancement for pointer analysis to keep up with modern compiler optimizations.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540040293</identifier><identifier>ISBN: 3540040293</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 354035767X</identifier><identifier>EISBN: 9783540357674</identifier><identifier>DOI: 10.1007/3-540-35767-X_19</identifier><identifier>OCLC: 664271945</identifier><identifier>LCCallNum: QA76.76.C65</identifier><language>eng</language><publisher>Germany: Springer Berlin / Heidelberg</publisher><subject>Applied sciences ; Benchmark Program ; Computer science; control theory; systems ; Computer systems and distributed systems. User interface ; Exact sciences and technology ; Preliminary Experimental Result ; Program Language Design ; Program Point ; Programming languages ; Software ; Transfer Function</subject><ispartof>Languages and Compilers for Parallel Computing, 2003, Vol.2624, p.290-305</ispartof><rights>Springer-Verlag Berlin Heidelberg 2003</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/3071543-l.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/3-540-35767-X_19$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/3-540-35767-X_19$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,27902,38232,41418,42487</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15735424$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Dietz, Henry Gordon</contributor><creatorcontrib>Hwang, Yuan-Shin</creatorcontrib><creatorcontrib>Chen, Peng-Sheng</creatorcontrib><creatorcontrib>Lee, Jenq Kuen</creatorcontrib><creatorcontrib>Ju, Roy Dz-Ching</creatorcontrib><title>Probabilistic Points-to Analysis</title><title>Languages and Compilers for Parallel Computing</title><description>Information gathered by the existing pointer analysis techniques can be classified as must aliases or definitely-points-to relationships, which hold for all executions, and may aliases or possibly-points-to relationships, which might hold for some executions. Such information does not provide quantitative descriptions to tell how likely the conditions will hold for the executions, which are needed for modern compiler optimizations, and thus has hindered compilers from more aggressive optimizations. This paper addresses this issue by proposing a probabilistic points-to analysis technique to compute the probability of each points-to relationship. Initial experiments are done by incorporating the probabilistic data flow analysis algorithm into SUIF and MachSUIF, and preliminary experimental results show the probability distributions of points-to relationships in several benchmark programs. This work presents a major enhancement for pointer analysis to keep up with modern compiler optimizations.</description><subject>Applied sciences</subject><subject>Benchmark Program</subject><subject>Computer science; control theory; systems</subject><subject>Computer systems and distributed systems. User interface</subject><subject>Exact sciences and technology</subject><subject>Preliminary Experimental Result</subject><subject>Program Language Design</subject><subject>Program Point</subject><subject>Programming languages</subject><subject>Software</subject><subject>Transfer Function</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540040293</isbn><isbn>3540040293</isbn><isbn>354035767X</isbn><isbn>9783540357674</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2003</creationdate><recordtype>book_chapter</recordtype><recordid>eNotUMtOwzAQNE8RSu8ce-HosvbasX2sqvKQKtEDSL1ZTnAgEJJgh0P_HqftXlaa2RnNDiG3DOYMQN0jlQIoSpUrurXMnJBrTMge2J6SjOWMUURhzsjUKD1yIIAbPCcZIHBqlMBLkuW54IoZIa_INMYvSINcIEBGZpvQFa6omzoOdTnbdHU7RDp0s0Xrml2s4w25qFwT_fS4J-TtYfW6fKLrl8fn5WJNe57rgVZGau28YlqgBCNLB9JJbSqNiiUAWQWaq6qQXnleQhIpWXD-zgyXuWM4IXcH397F0jVVcG1ZR9uH-seFnWVSpfdS6AmZH-5iotoPH2zRdd_RMrBjZxZtasHuK7JjZ0mAR-PQ_f75OFg_KkrfDsE15afrBx-iRUg5BVouLTcG_wFdbGaS</recordid><startdate>20030101</startdate><enddate>20030101</enddate><creator>Hwang, Yuan-Shin</creator><creator>Chen, Peng-Sheng</creator><creator>Lee, Jenq Kuen</creator><creator>Ju, Roy Dz-Ching</creator><general>Springer Berlin / Heidelberg</general><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>FFUUA</scope><scope>IQODW</scope></search><sort><creationdate>20030101</creationdate><title>Probabilistic Points-to Analysis</title><author>Hwang, Yuan-Shin ; Chen, Peng-Sheng ; Lee, Jenq Kuen ; Ju, Roy Dz-Ching</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p268t-f9588ae718435095ca05a589f837150931f0827fb5e7e2c026875b22d19256a13</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Applied sciences</topic><topic>Benchmark Program</topic><topic>Computer science; control theory; systems</topic><topic>Computer systems and distributed systems. User interface</topic><topic>Exact sciences and technology</topic><topic>Preliminary Experimental Result</topic><topic>Program Language Design</topic><topic>Program Point</topic><topic>Programming languages</topic><topic>Software</topic><topic>Transfer Function</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hwang, Yuan-Shin</creatorcontrib><creatorcontrib>Chen, Peng-Sheng</creatorcontrib><creatorcontrib>Lee, Jenq Kuen</creatorcontrib><creatorcontrib>Ju, Roy Dz-Ching</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hwang, Yuan-Shin</au><au>Chen, Peng-Sheng</au><au>Lee, Jenq Kuen</au><au>Ju, Roy Dz-Ching</au><au>Dietz, Henry Gordon</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Probabilistic Points-to Analysis</atitle><btitle>Languages and Compilers for Parallel Computing</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2003-01-01</date><risdate>2003</risdate><volume>2624</volume><spage>290</spage><epage>305</epage><pages>290-305</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540040293</isbn><isbn>3540040293</isbn><eisbn>354035767X</eisbn><eisbn>9783540357674</eisbn><abstract>Information gathered by the existing pointer analysis techniques can be classified as must aliases or definitely-points-to relationships, which hold for all executions, and may aliases or possibly-points-to relationships, which might hold for some executions. Such information does not provide quantitative descriptions to tell how likely the conditions will hold for the executions, which are needed for modern compiler optimizations, and thus has hindered compilers from more aggressive optimizations. This paper addresses this issue by proposing a probabilistic points-to analysis technique to compute the probability of each points-to relationship. Initial experiments are done by incorporating the probabilistic data flow analysis algorithm into SUIF and MachSUIF, and preliminary experimental results show the probability distributions of points-to relationships in several benchmark programs. This work presents a major enhancement for pointer analysis to keep up with modern compiler optimizations.</abstract><cop>Germany</cop><pub>Springer Berlin / Heidelberg</pub><doi>10.1007/3-540-35767-X_19</doi><oclcid>664271945</oclcid><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Languages and Compilers for Parallel Computing, 2003, Vol.2624, p.290-305 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_15735424 |
source | Springer Books |
subjects | Applied sciences Benchmark Program Computer science control theory systems Computer systems and distributed systems. User interface Exact sciences and technology Preliminary Experimental Result Program Language Design Program Point Programming languages Software Transfer Function |
title | Probabilistic Points-to Analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T06%3A01%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Probabilistic%20Points-to%20Analysis&rft.btitle=Languages%20and%20Compilers%20for%20Parallel%20Computing&rft.au=Hwang,%20Yuan-Shin&rft.date=2003-01-01&rft.volume=2624&rft.spage=290&rft.epage=305&rft.pages=290-305&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540040293&rft.isbn_list=3540040293&rft_id=info:doi/10.1007/3-540-35767-X_19&rft_dat=%3Cproquest_pasca%3EEBC3071543_25_299%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&rft.eisbn=354035767X&rft.eisbn_list=9783540357674&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC3071543_25_299&rft_id=info:pmid/&rfr_iscdi=true |