Probabilistic Points-to Analysis

Information gathered by the existing pointer analysis techniques can be classified as must aliases or definitely-points-to relationships, which hold for all executions, and may aliases or possibly-points-to relationships, which might hold for some executions. Such information does not provide quanti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hwang, Yuan-Shin, Chen, Peng-Sheng, Lee, Jenq Kuen, Ju, Roy Dz-Ching
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 305
container_issue
container_start_page 290
container_title
container_volume 2624
creator Hwang, Yuan-Shin
Chen, Peng-Sheng
Lee, Jenq Kuen
Ju, Roy Dz-Ching
description Information gathered by the existing pointer analysis techniques can be classified as must aliases or definitely-points-to relationships, which hold for all executions, and may aliases or possibly-points-to relationships, which might hold for some executions. Such information does not provide quantitative descriptions to tell how likely the conditions will hold for the executions, which are needed for modern compiler optimizations, and thus has hindered compilers from more aggressive optimizations. This paper addresses this issue by proposing a probabilistic points-to analysis technique to compute the probability of each points-to relationship. Initial experiments are done by incorporating the probabilistic data flow analysis algorithm into SUIF and MachSUIF, and preliminary experimental results show the probability distributions of points-to relationships in several benchmark programs. This work presents a major enhancement for pointer analysis to keep up with modern compiler optimizations.
doi_str_mv 10.1007/3-540-35767-X_19
format Book Chapter
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_15735424</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC3071543_25_299</sourcerecordid><originalsourceid>FETCH-LOGICAL-p268t-f9588ae718435095ca05a589f837150931f0827fb5e7e2c026875b22d19256a13</originalsourceid><addsrcrecordid>eNotUMtOwzAQNE8RSu8ce-HosvbasX2sqvKQKtEDSL1ZTnAgEJJgh0P_HqftXlaa2RnNDiG3DOYMQN0jlQIoSpUrurXMnJBrTMge2J6SjOWMUURhzsjUKD1yIIAbPCcZIHBqlMBLkuW54IoZIa_INMYvSINcIEBGZpvQFa6omzoOdTnbdHU7RDp0s0Xrml2s4w25qFwT_fS4J-TtYfW6fKLrl8fn5WJNe57rgVZGau28YlqgBCNLB9JJbSqNiiUAWQWaq6qQXnleQhIpWXD-zgyXuWM4IXcH397F0jVVcG1ZR9uH-seFnWVSpfdS6AmZH-5iotoPH2zRdd_RMrBjZxZtasHuK7JjZ0mAR-PQ_f75OFg_KkrfDsE15afrBx-iRUg5BVouLTcG_wFdbGaS</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC3071543_25_299</pqid></control><display><type>book_chapter</type><title>Probabilistic Points-to Analysis</title><source>Springer Books</source><creator>Hwang, Yuan-Shin ; Chen, Peng-Sheng ; Lee, Jenq Kuen ; Ju, Roy Dz-Ching</creator><contributor>Dietz, Henry Gordon</contributor><creatorcontrib>Hwang, Yuan-Shin ; Chen, Peng-Sheng ; Lee, Jenq Kuen ; Ju, Roy Dz-Ching ; Dietz, Henry Gordon</creatorcontrib><description>Information gathered by the existing pointer analysis techniques can be classified as must aliases or definitely-points-to relationships, which hold for all executions, and may aliases or possibly-points-to relationships, which might hold for some executions. Such information does not provide quantitative descriptions to tell how likely the conditions will hold for the executions, which are needed for modern compiler optimizations, and thus has hindered compilers from more aggressive optimizations. This paper addresses this issue by proposing a probabilistic points-to analysis technique to compute the probability of each points-to relationship. Initial experiments are done by incorporating the probabilistic data flow analysis algorithm into SUIF and MachSUIF, and preliminary experimental results show the probability distributions of points-to relationships in several benchmark programs. This work presents a major enhancement for pointer analysis to keep up with modern compiler optimizations.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540040293</identifier><identifier>ISBN: 3540040293</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 354035767X</identifier><identifier>EISBN: 9783540357674</identifier><identifier>DOI: 10.1007/3-540-35767-X_19</identifier><identifier>OCLC: 664271945</identifier><identifier>LCCallNum: QA76.76.C65</identifier><language>eng</language><publisher>Germany: Springer Berlin / Heidelberg</publisher><subject>Applied sciences ; Benchmark Program ; Computer science; control theory; systems ; Computer systems and distributed systems. User interface ; Exact sciences and technology ; Preliminary Experimental Result ; Program Language Design ; Program Point ; Programming languages ; Software ; Transfer Function</subject><ispartof>Languages and Compilers for Parallel Computing, 2003, Vol.2624, p.290-305</ispartof><rights>Springer-Verlag Berlin Heidelberg 2003</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/3071543-l.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/3-540-35767-X_19$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/3-540-35767-X_19$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,27902,38232,41418,42487</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15735424$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Dietz, Henry Gordon</contributor><creatorcontrib>Hwang, Yuan-Shin</creatorcontrib><creatorcontrib>Chen, Peng-Sheng</creatorcontrib><creatorcontrib>Lee, Jenq Kuen</creatorcontrib><creatorcontrib>Ju, Roy Dz-Ching</creatorcontrib><title>Probabilistic Points-to Analysis</title><title>Languages and Compilers for Parallel Computing</title><description>Information gathered by the existing pointer analysis techniques can be classified as must aliases or definitely-points-to relationships, which hold for all executions, and may aliases or possibly-points-to relationships, which might hold for some executions. Such information does not provide quantitative descriptions to tell how likely the conditions will hold for the executions, which are needed for modern compiler optimizations, and thus has hindered compilers from more aggressive optimizations. This paper addresses this issue by proposing a probabilistic points-to analysis technique to compute the probability of each points-to relationship. Initial experiments are done by incorporating the probabilistic data flow analysis algorithm into SUIF and MachSUIF, and preliminary experimental results show the probability distributions of points-to relationships in several benchmark programs. This work presents a major enhancement for pointer analysis to keep up with modern compiler optimizations.</description><subject>Applied sciences</subject><subject>Benchmark Program</subject><subject>Computer science; control theory; systems</subject><subject>Computer systems and distributed systems. User interface</subject><subject>Exact sciences and technology</subject><subject>Preliminary Experimental Result</subject><subject>Program Language Design</subject><subject>Program Point</subject><subject>Programming languages</subject><subject>Software</subject><subject>Transfer Function</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540040293</isbn><isbn>3540040293</isbn><isbn>354035767X</isbn><isbn>9783540357674</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2003</creationdate><recordtype>book_chapter</recordtype><recordid>eNotUMtOwzAQNE8RSu8ce-HosvbasX2sqvKQKtEDSL1ZTnAgEJJgh0P_HqftXlaa2RnNDiG3DOYMQN0jlQIoSpUrurXMnJBrTMge2J6SjOWMUURhzsjUKD1yIIAbPCcZIHBqlMBLkuW54IoZIa_INMYvSINcIEBGZpvQFa6omzoOdTnbdHU7RDp0s0Xrml2s4w25qFwT_fS4J-TtYfW6fKLrl8fn5WJNe57rgVZGau28YlqgBCNLB9JJbSqNiiUAWQWaq6qQXnleQhIpWXD-zgyXuWM4IXcH397F0jVVcG1ZR9uH-seFnWVSpfdS6AmZH-5iotoPH2zRdd_RMrBjZxZtasHuK7JjZ0mAR-PQ_f75OFg_KkrfDsE15afrBx-iRUg5BVouLTcG_wFdbGaS</recordid><startdate>20030101</startdate><enddate>20030101</enddate><creator>Hwang, Yuan-Shin</creator><creator>Chen, Peng-Sheng</creator><creator>Lee, Jenq Kuen</creator><creator>Ju, Roy Dz-Ching</creator><general>Springer Berlin / Heidelberg</general><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>FFUUA</scope><scope>IQODW</scope></search><sort><creationdate>20030101</creationdate><title>Probabilistic Points-to Analysis</title><author>Hwang, Yuan-Shin ; Chen, Peng-Sheng ; Lee, Jenq Kuen ; Ju, Roy Dz-Ching</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p268t-f9588ae718435095ca05a589f837150931f0827fb5e7e2c026875b22d19256a13</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Applied sciences</topic><topic>Benchmark Program</topic><topic>Computer science; control theory; systems</topic><topic>Computer systems and distributed systems. User interface</topic><topic>Exact sciences and technology</topic><topic>Preliminary Experimental Result</topic><topic>Program Language Design</topic><topic>Program Point</topic><topic>Programming languages</topic><topic>Software</topic><topic>Transfer Function</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hwang, Yuan-Shin</creatorcontrib><creatorcontrib>Chen, Peng-Sheng</creatorcontrib><creatorcontrib>Lee, Jenq Kuen</creatorcontrib><creatorcontrib>Ju, Roy Dz-Ching</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hwang, Yuan-Shin</au><au>Chen, Peng-Sheng</au><au>Lee, Jenq Kuen</au><au>Ju, Roy Dz-Ching</au><au>Dietz, Henry Gordon</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Probabilistic Points-to Analysis</atitle><btitle>Languages and Compilers for Parallel Computing</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2003-01-01</date><risdate>2003</risdate><volume>2624</volume><spage>290</spage><epage>305</epage><pages>290-305</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540040293</isbn><isbn>3540040293</isbn><eisbn>354035767X</eisbn><eisbn>9783540357674</eisbn><abstract>Information gathered by the existing pointer analysis techniques can be classified as must aliases or definitely-points-to relationships, which hold for all executions, and may aliases or possibly-points-to relationships, which might hold for some executions. Such information does not provide quantitative descriptions to tell how likely the conditions will hold for the executions, which are needed for modern compiler optimizations, and thus has hindered compilers from more aggressive optimizations. This paper addresses this issue by proposing a probabilistic points-to analysis technique to compute the probability of each points-to relationship. Initial experiments are done by incorporating the probabilistic data flow analysis algorithm into SUIF and MachSUIF, and preliminary experimental results show the probability distributions of points-to relationships in several benchmark programs. This work presents a major enhancement for pointer analysis to keep up with modern compiler optimizations.</abstract><cop>Germany</cop><pub>Springer Berlin / Heidelberg</pub><doi>10.1007/3-540-35767-X_19</doi><oclcid>664271945</oclcid><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Languages and Compilers for Parallel Computing, 2003, Vol.2624, p.290-305
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_15735424
source Springer Books
subjects Applied sciences
Benchmark Program
Computer science
control theory
systems
Computer systems and distributed systems. User interface
Exact sciences and technology
Preliminary Experimental Result
Program Language Design
Program Point
Programming languages
Software
Transfer Function
title Probabilistic Points-to Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T06%3A01%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Probabilistic%20Points-to%20Analysis&rft.btitle=Languages%20and%20Compilers%20for%20Parallel%20Computing&rft.au=Hwang,%20Yuan-Shin&rft.date=2003-01-01&rft.volume=2624&rft.spage=290&rft.epage=305&rft.pages=290-305&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540040293&rft.isbn_list=3540040293&rft_id=info:doi/10.1007/3-540-35767-X_19&rft_dat=%3Cproquest_pasca%3EEBC3071543_25_299%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&rft.eisbn=354035767X&rft.eisbn_list=9783540357674&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC3071543_25_299&rft_id=info:pmid/&rfr_iscdi=true