Faster Algorithms for MAX CUT and MAX CSP, with Polynomial Expected Time for Sparse Instances

We show that a random instance of a weighted maximum constraint satisfaction problem (or max 2-csp), whose clauses are over pairs of binary variables, is solvable by a deterministic algorithm in polynomial expected time, in the “sparse” regime where the expected number of clauses is half the number...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Scott, Alexander D., Sorkin, Gregory B.
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 395
container_issue
container_start_page 382
container_title
container_volume 2764
creator Scott, Alexander D.
Sorkin, Gregory B.
description We show that a random instance of a weighted maximum constraint satisfaction problem (or max 2-csp), whose clauses are over pairs of binary variables, is solvable by a deterministic algorithm in polynomial expected time, in the “sparse” regime where the expected number of clauses is half the number of variables. In particular, a maximum cut in a random graph with edge density 1/n or less can be found in polynomial expected time. Our method is to show, first, that if a max 2-csp has a connected underlying graph with n vertices and m edges, the solution time can be deterministically bounded by 2(m − n)/2. Then, analyzing the tails of the distribution of this quantity for a component of a random graph yields our result. An alternative deterministic bound on the solution time, as 2m/5, improves upon a series of recent results.
doi_str_mv 10.1007/978-3-540-45198-3_32
format Book Chapter
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_15692310</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC4516828_34_390</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-c27391f7ce74d396e235488a33c99314732bfdb329d385d5550be091c5b4e7c63</originalsourceid><addsrcrecordid>eNpFkM1OwzAQhM2vqErfgIMv3AjYXjuOj1XVQqUikGglLshyHAcCaRLsIOjb47ZI7GVXMztr-UPogpJrSoi8UTJLIBGcJFxQFWcN7ACNogxR3GlwiAY0pTQB4Oro3yNSkvQYDQgQlijJ4RQNlJCUCcrTMzQK4Z3EAkYhowP0MjOhdx6P69fWV_3bOuCy9fh-_IwnqyU2TbGfnx6v8Hf08WNbb5p2XZkaT386Z3tX4GW1drvYU2d8cHjehN401oVzdFKaOrjRXx-i1Wy6nNwli4fb-WS8SCykqk8sk6BoKa2TvACVOha_kmUGwCoFlEtgeVnkwFQBmSiEECR3RFErcu6kTWGILvd3OxOsqUsfX6-C7ny1Nn6jqUgVA0riHtvvhWg1r87rvG0_gqZEb7nrCFGDjhj1jrHeco8h-Dvu288vF3rttinrmt6b2r6ZLgIM20SasZjhGhSBX0DHfcg</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC4516828_34_390</pqid></control><display><type>book_chapter</type><title>Faster Algorithms for MAX CUT and MAX CSP, with Polynomial Expected Time for Sparse Instances</title><source>Springer Books</source><creator>Scott, Alexander D. ; Sorkin, Gregory B.</creator><contributor>Jansen, Klaus ; Arora, Sanjeev ; Rolim, Jose D. P ; Sahai, Amit ; Sahai, Amit ; Arora, Sanjeev ; Jansen, Klaus ; Rolim, José D. P.</contributor><creatorcontrib>Scott, Alexander D. ; Sorkin, Gregory B. ; Jansen, Klaus ; Arora, Sanjeev ; Rolim, Jose D. P ; Sahai, Amit ; Sahai, Amit ; Arora, Sanjeev ; Jansen, Klaus ; Rolim, José D. P.</creatorcontrib><description>We show that a random instance of a weighted maximum constraint satisfaction problem (or max 2-csp), whose clauses are over pairs of binary variables, is solvable by a deterministic algorithm in polynomial expected time, in the “sparse” regime where the expected number of clauses is half the number of variables. In particular, a maximum cut in a random graph with edge density 1/n or less can be found in polynomial expected time. Our method is to show, first, that if a max 2-csp has a connected underlying graph with n vertices and m edges, the solution time can be deterministically bounded by 2(m − n)/2. Then, analyzing the tails of the distribution of this quantity for a component of a random graph yields our result. An alternative deterministic bound on the solution time, as 2m/5, improves upon a series of recent results.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540407706</identifier><identifier>ISBN: 3540407707</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540451983</identifier><identifier>EISBN: 3540451986</identifier><identifier>DOI: 10.1007/978-3-540-45198-3_32</identifier><identifier>OCLC: 957125146</identifier><identifier>LCCallNum: QA76.758</identifier><language>eng</language><publisher>Germany: Springer Berlin / Heidelberg</publisher><subject>Algorithms &amp; data structures ; Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Cyclomatic Number ; Dense Instance ; Discrete mathematics ; Exact sciences and technology ; Mathematical theory of computation ; Pattern recognition. Digital image processing. Computational geometry ; Random Graph ; Software ; Sparse Random Graph ; Speech and sound recognition and synthesis. Linguistics ; Underlying Graph</subject><ispartof>Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, 2003, Vol.2764, p.382-395</ispartof><rights>Springer-Verlag Berlin Heidelberg 2003</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-c27391f7ce74d396e235488a33c99314732bfdb329d385d5550be091c5b4e7c63</citedby><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/4516828-l.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/978-3-540-45198-3_32$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/978-3-540-45198-3_32$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,777,778,782,787,788,791,4038,4039,27914,38244,41431,42500</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15692310$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Jansen, Klaus</contributor><contributor>Arora, Sanjeev</contributor><contributor>Rolim, Jose D. P</contributor><contributor>Sahai, Amit</contributor><contributor>Sahai, Amit</contributor><contributor>Arora, Sanjeev</contributor><contributor>Jansen, Klaus</contributor><contributor>Rolim, José D. P.</contributor><creatorcontrib>Scott, Alexander D.</creatorcontrib><creatorcontrib>Sorkin, Gregory B.</creatorcontrib><title>Faster Algorithms for MAX CUT and MAX CSP, with Polynomial Expected Time for Sparse Instances</title><title>Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques</title><description>We show that a random instance of a weighted maximum constraint satisfaction problem (or max 2-csp), whose clauses are over pairs of binary variables, is solvable by a deterministic algorithm in polynomial expected time, in the “sparse” regime where the expected number of clauses is half the number of variables. In particular, a maximum cut in a random graph with edge density 1/n or less can be found in polynomial expected time. Our method is to show, first, that if a max 2-csp has a connected underlying graph with n vertices and m edges, the solution time can be deterministically bounded by 2(m − n)/2. Then, analyzing the tails of the distribution of this quantity for a component of a random graph yields our result. An alternative deterministic bound on the solution time, as 2m/5, improves upon a series of recent results.</description><subject>Algorithms &amp; data structures</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Cyclomatic Number</subject><subject>Dense Instance</subject><subject>Discrete mathematics</subject><subject>Exact sciences and technology</subject><subject>Mathematical theory of computation</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Random Graph</subject><subject>Software</subject><subject>Sparse Random Graph</subject><subject>Speech and sound recognition and synthesis. Linguistics</subject><subject>Underlying Graph</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540407706</isbn><isbn>3540407707</isbn><isbn>9783540451983</isbn><isbn>3540451986</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2003</creationdate><recordtype>book_chapter</recordtype><recordid>eNpFkM1OwzAQhM2vqErfgIMv3AjYXjuOj1XVQqUikGglLshyHAcCaRLsIOjb47ZI7GVXMztr-UPogpJrSoi8UTJLIBGcJFxQFWcN7ACNogxR3GlwiAY0pTQB4Oro3yNSkvQYDQgQlijJ4RQNlJCUCcrTMzQK4Z3EAkYhowP0MjOhdx6P69fWV_3bOuCy9fh-_IwnqyU2TbGfnx6v8Hf08WNbb5p2XZkaT386Z3tX4GW1drvYU2d8cHjehN401oVzdFKaOrjRXx-i1Wy6nNwli4fb-WS8SCykqk8sk6BoKa2TvACVOha_kmUGwCoFlEtgeVnkwFQBmSiEECR3RFErcu6kTWGILvd3OxOsqUsfX6-C7ny1Nn6jqUgVA0riHtvvhWg1r87rvG0_gqZEb7nrCFGDjhj1jrHeco8h-Dvu288vF3rttinrmt6b2r6ZLgIM20SasZjhGhSBX0DHfcg</recordid><startdate>2003</startdate><enddate>2003</enddate><creator>Scott, Alexander D.</creator><creator>Sorkin, Gregory B.</creator><general>Springer Berlin / Heidelberg</general><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>FFUUA</scope><scope>IQODW</scope></search><sort><creationdate>2003</creationdate><title>Faster Algorithms for MAX CUT and MAX CSP, with Polynomial Expected Time for Sparse Instances</title><author>Scott, Alexander D. ; Sorkin, Gregory B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-c27391f7ce74d396e235488a33c99314732bfdb329d385d5550be091c5b4e7c63</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Algorithms &amp; data structures</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Cyclomatic Number</topic><topic>Dense Instance</topic><topic>Discrete mathematics</topic><topic>Exact sciences and technology</topic><topic>Mathematical theory of computation</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Random Graph</topic><topic>Software</topic><topic>Sparse Random Graph</topic><topic>Speech and sound recognition and synthesis. Linguistics</topic><topic>Underlying Graph</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Scott, Alexander D.</creatorcontrib><creatorcontrib>Sorkin, Gregory B.</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scott, Alexander D.</au><au>Sorkin, Gregory B.</au><au>Jansen, Klaus</au><au>Arora, Sanjeev</au><au>Rolim, Jose D. P</au><au>Sahai, Amit</au><au>Sahai, Amit</au><au>Arora, Sanjeev</au><au>Jansen, Klaus</au><au>Rolim, José D. P.</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Faster Algorithms for MAX CUT and MAX CSP, with Polynomial Expected Time for Sparse Instances</atitle><btitle>Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2003</date><risdate>2003</risdate><volume>2764</volume><spage>382</spage><epage>395</epage><pages>382-395</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540407706</isbn><isbn>3540407707</isbn><eisbn>9783540451983</eisbn><eisbn>3540451986</eisbn><abstract>We show that a random instance of a weighted maximum constraint satisfaction problem (or max 2-csp), whose clauses are over pairs of binary variables, is solvable by a deterministic algorithm in polynomial expected time, in the “sparse” regime where the expected number of clauses is half the number of variables. In particular, a maximum cut in a random graph with edge density 1/n or less can be found in polynomial expected time. Our method is to show, first, that if a max 2-csp has a connected underlying graph with n vertices and m edges, the solution time can be deterministically bounded by 2(m − n)/2. Then, analyzing the tails of the distribution of this quantity for a component of a random graph yields our result. An alternative deterministic bound on the solution time, as 2m/5, improves upon a series of recent results.</abstract><cop>Germany</cop><pub>Springer Berlin / Heidelberg</pub><doi>10.1007/978-3-540-45198-3_32</doi><oclcid>957125146</oclcid><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, 2003, Vol.2764, p.382-395
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_15692310
source Springer Books
subjects Algorithms & data structures
Applied sciences
Artificial intelligence
Computer science
control theory
systems
Cyclomatic Number
Dense Instance
Discrete mathematics
Exact sciences and technology
Mathematical theory of computation
Pattern recognition. Digital image processing. Computational geometry
Random Graph
Software
Sparse Random Graph
Speech and sound recognition and synthesis. Linguistics
Underlying Graph
title Faster Algorithms for MAX CUT and MAX CSP, with Polynomial Expected Time for Sparse Instances
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T08%3A44%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Faster%20Algorithms%20for%20MAX%20CUT%20and%20MAX%20CSP,%20with%20Polynomial%20Expected%20Time%20for%20Sparse%20Instances&rft.btitle=Approximation,%20Randomization,%20and%20Combinatorial%20Optimization.%20Algorithms%20and%20Techniques&rft.au=Scott,%20Alexander%20D.&rft.date=2003&rft.volume=2764&rft.spage=382&rft.epage=395&rft.pages=382-395&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540407706&rft.isbn_list=3540407707&rft_id=info:doi/10.1007/978-3-540-45198-3_32&rft_dat=%3Cproquest_pasca%3EEBC4516828_34_390%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540451983&rft.eisbn_list=3540451986&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC4516828_34_390&rft_id=info:pmid/&rfr_iscdi=true