Revisiting the Foundations of Artificial Immune Systems: A Problem-Oriented Perspective

Since their development, AIS have been used for a number of machine learning tasks including that of classification. Within the literature, there appears to be a lack of appreciation for the possible bias in the selection of various representations and affinity measures that may be introduced when e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Freitas, Alex A., Timmis, Jon
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 241
container_issue
container_start_page 229
container_title
container_volume 2787
creator Freitas, Alex A.
Timmis, Jon
description Since their development, AIS have been used for a number of machine learning tasks including that of classification. Within the literature, there appears to be a lack of appreciation for the possible bias in the selection of various representations and affinity measures that may be introduced when employing AIS in classification tasks. Problems are then compounded when inductive bias of algorithms are not taken into account when applying seemingly generic AIS algorithms to specific application domains. This paper is an attempt at highlighting some of these issues. Using the example of classification, this paper explains the potential pitfalls in representation selection and the use of various affinity measures. Additionally, attention is given to the use of negative selection in classification and it is argued that this may be not an appropriate algorithm for such a task. This paper then presents ideas on avoiding unnecessary mistakes in the choice and design of AIS algorithms and ultimately delivered solutions.
doi_str_mv 10.1007/978-3-540-45192-1_22
format Book Chapter
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_15692129</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC3088179_27_240</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-3990319fda5f4ac9bdd87067860af0a961ecf60faa457c431badb42d865520a03</originalsourceid><addsrcrecordid>eNotkEtvHCEQhMlT2Tj7D3LgkiNJQzMw5Lay4sSSJVt5KEfEMGCTzGMDrCX_-7Br96WlquqW6iPkPYePHEB_MrpnyDoJTHbcCMatEM_ItsnYxJPGn5MNV5wzRGlekLcnA7RS5iXZAIJgRkt8TTam-T1Ird6QbSl_oA0K3qIb8vt7uE8l1bTc0noX6MV6WEZX07oUuka6yzXF5JOb6OU8H5ZAfzyUGubyme7oTV6HKczsOqew1DDSm5DLPvia7sM78iq6qYTt0z4jvy6-_Dz_xq6uv16e766YR4GVoTGA3MTRdVE6b4Zx7DUo3StwEZxRPPioIDonO-0l8sGNgxRjr7pOgAM8Ix8e_-5d8W6K2S0-FbvPaXb5wfJONU7CtJx4zJVmLbch22Fd_xbLwR5x28bVom0A7QmtPeJuR_j0PK__DqFUG45XvrXNbvJ3bl9bY4vQ91wbK7QVEvA_4U991g</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC3088179_27_240</pqid></control><display><type>book_chapter</type><title>Revisiting the Foundations of Artificial Immune Systems: A Problem-Oriented Perspective</title><source>Springer Books</source><creator>Freitas, Alex A. ; Timmis, Jon</creator><contributor>Hart, Emma ; Bentley, Peter ; Timmis, Jon</contributor><creatorcontrib>Freitas, Alex A. ; Timmis, Jon ; Hart, Emma ; Bentley, Peter ; Timmis, Jon</creatorcontrib><description>Since their development, AIS have been used for a number of machine learning tasks including that of classification. Within the literature, there appears to be a lack of appreciation for the possible bias in the selection of various representations and affinity measures that may be introduced when employing AIS in classification tasks. Problems are then compounded when inductive bias of algorithms are not taken into account when applying seemingly generic AIS algorithms to specific application domains. This paper is an attempt at highlighting some of these issues. Using the example of classification, this paper explains the potential pitfalls in representation selection and the use of various affinity measures. Additionally, attention is given to the use of negative selection in classification and it is argued that this may be not an appropriate algorithm for such a task. This paper then presents ideas on avoiding unnecessary mistakes in the choice and design of AIS algorithms and ultimately delivered solutions.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540407669</identifier><identifier>ISBN: 9783540407669</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540451921</identifier><identifier>EISBN: 3540451927</identifier><identifier>DOI: 10.1007/978-3-540-45192-1_22</identifier><identifier>OCLC: 934980476</identifier><identifier>LCCallNum: QA75.5-76.95</identifier><language>eng</language><publisher>Germany: Springer Berlin / Heidelberg</publisher><subject>Applied sciences ; Artificial Immune System ; Artificial intelligence ; Categorical Attribute ; Classification Algorithm ; Classification Task ; Computer science; control theory; systems ; Distance Metrics ; Exact sciences and technology ; Pattern recognition. Digital image processing. Computational geometry ; Software ; Speech and sound recognition and synthesis. Linguistics</subject><ispartof>Artificial Immune Systems, 2003, Vol.2787, p.229-241</ispartof><rights>Springer-Verlag Berlin Heidelberg 2003</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c323t-3990319fda5f4ac9bdd87067860af0a961ecf60faa457c431badb42d865520a03</citedby><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/3088179-l.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/978-3-540-45192-1_22$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/978-3-540-45192-1_22$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4036,4037,27902,38232,41418,42487</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15692129$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Hart, Emma</contributor><contributor>Bentley, Peter</contributor><contributor>Timmis, Jon</contributor><creatorcontrib>Freitas, Alex A.</creatorcontrib><creatorcontrib>Timmis, Jon</creatorcontrib><title>Revisiting the Foundations of Artificial Immune Systems: A Problem-Oriented Perspective</title><title>Artificial Immune Systems</title><description>Since their development, AIS have been used for a number of machine learning tasks including that of classification. Within the literature, there appears to be a lack of appreciation for the possible bias in the selection of various representations and affinity measures that may be introduced when employing AIS in classification tasks. Problems are then compounded when inductive bias of algorithms are not taken into account when applying seemingly generic AIS algorithms to specific application domains. This paper is an attempt at highlighting some of these issues. Using the example of classification, this paper explains the potential pitfalls in representation selection and the use of various affinity measures. Additionally, attention is given to the use of negative selection in classification and it is argued that this may be not an appropriate algorithm for such a task. This paper then presents ideas on avoiding unnecessary mistakes in the choice and design of AIS algorithms and ultimately delivered solutions.</description><subject>Applied sciences</subject><subject>Artificial Immune System</subject><subject>Artificial intelligence</subject><subject>Categorical Attribute</subject><subject>Classification Algorithm</subject><subject>Classification Task</subject><subject>Computer science; control theory; systems</subject><subject>Distance Metrics</subject><subject>Exact sciences and technology</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Software</subject><subject>Speech and sound recognition and synthesis. Linguistics</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540407669</isbn><isbn>9783540407669</isbn><isbn>9783540451921</isbn><isbn>3540451927</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2003</creationdate><recordtype>book_chapter</recordtype><recordid>eNotkEtvHCEQhMlT2Tj7D3LgkiNJQzMw5Lay4sSSJVt5KEfEMGCTzGMDrCX_-7Br96WlquqW6iPkPYePHEB_MrpnyDoJTHbcCMatEM_ItsnYxJPGn5MNV5wzRGlekLcnA7RS5iXZAIJgRkt8TTam-T1Ird6QbSl_oA0K3qIb8vt7uE8l1bTc0noX6MV6WEZX07oUuka6yzXF5JOb6OU8H5ZAfzyUGubyme7oTV6HKczsOqew1DDSm5DLPvia7sM78iq6qYTt0z4jvy6-_Dz_xq6uv16e766YR4GVoTGA3MTRdVE6b4Zx7DUo3StwEZxRPPioIDonO-0l8sGNgxRjr7pOgAM8Ix8e_-5d8W6K2S0-FbvPaXb5wfJONU7CtJx4zJVmLbch22Fd_xbLwR5x28bVom0A7QmtPeJuR_j0PK__DqFUG45XvrXNbvJ3bl9bY4vQ91wbK7QVEvA_4U991g</recordid><startdate>2003</startdate><enddate>2003</enddate><creator>Freitas, Alex A.</creator><creator>Timmis, Jon</creator><general>Springer Berlin / Heidelberg</general><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>FFUUA</scope><scope>IQODW</scope></search><sort><creationdate>2003</creationdate><title>Revisiting the Foundations of Artificial Immune Systems: A Problem-Oriented Perspective</title><author>Freitas, Alex A. ; Timmis, Jon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-3990319fda5f4ac9bdd87067860af0a961ecf60faa457c431badb42d865520a03</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Applied sciences</topic><topic>Artificial Immune System</topic><topic>Artificial intelligence</topic><topic>Categorical Attribute</topic><topic>Classification Algorithm</topic><topic>Classification Task</topic><topic>Computer science; control theory; systems</topic><topic>Distance Metrics</topic><topic>Exact sciences and technology</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Software</topic><topic>Speech and sound recognition and synthesis. Linguistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Freitas, Alex A.</creatorcontrib><creatorcontrib>Timmis, Jon</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Freitas, Alex A.</au><au>Timmis, Jon</au><au>Hart, Emma</au><au>Bentley, Peter</au><au>Timmis, Jon</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Revisiting the Foundations of Artificial Immune Systems: A Problem-Oriented Perspective</atitle><btitle>Artificial Immune Systems</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2003</date><risdate>2003</risdate><volume>2787</volume><spage>229</spage><epage>241</epage><pages>229-241</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540407669</isbn><isbn>9783540407669</isbn><eisbn>9783540451921</eisbn><eisbn>3540451927</eisbn><abstract>Since their development, AIS have been used for a number of machine learning tasks including that of classification. Within the literature, there appears to be a lack of appreciation for the possible bias in the selection of various representations and affinity measures that may be introduced when employing AIS in classification tasks. Problems are then compounded when inductive bias of algorithms are not taken into account when applying seemingly generic AIS algorithms to specific application domains. This paper is an attempt at highlighting some of these issues. Using the example of classification, this paper explains the potential pitfalls in representation selection and the use of various affinity measures. Additionally, attention is given to the use of negative selection in classification and it is argued that this may be not an appropriate algorithm for such a task. This paper then presents ideas on avoiding unnecessary mistakes in the choice and design of AIS algorithms and ultimately delivered solutions.</abstract><cop>Germany</cop><pub>Springer Berlin / Heidelberg</pub><doi>10.1007/978-3-540-45192-1_22</doi><oclcid>934980476</oclcid><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Artificial Immune Systems, 2003, Vol.2787, p.229-241
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_15692129
source Springer Books
subjects Applied sciences
Artificial Immune System
Artificial intelligence
Categorical Attribute
Classification Algorithm
Classification Task
Computer science
control theory
systems
Distance Metrics
Exact sciences and technology
Pattern recognition. Digital image processing. Computational geometry
Software
Speech and sound recognition and synthesis. Linguistics
title Revisiting the Foundations of Artificial Immune Systems: A Problem-Oriented Perspective
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T02%3A09%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Revisiting%20the%20Foundations%20of%20Artificial%20Immune%20Systems:%20A%20Problem-Oriented%20Perspective&rft.btitle=Artificial%20Immune%20Systems&rft.au=Freitas,%20Alex%20A.&rft.date=2003&rft.volume=2787&rft.spage=229&rft.epage=241&rft.pages=229-241&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540407669&rft.isbn_list=9783540407669&rft_id=info:doi/10.1007/978-3-540-45192-1_22&rft_dat=%3Cproquest_pasca%3EEBC3088179_27_240%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540451921&rft.eisbn_list=3540451927&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC3088179_27_240&rft_id=info:pmid/&rfr_iscdi=true