Revisiting the Foundations of Artificial Immune Systems: A Problem-Oriented Perspective
Since their development, AIS have been used for a number of machine learning tasks including that of classification. Within the literature, there appears to be a lack of appreciation for the possible bias in the selection of various representations and affinity measures that may be introduced when e...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 241 |
---|---|
container_issue | |
container_start_page | 229 |
container_title | |
container_volume | 2787 |
creator | Freitas, Alex A. Timmis, Jon |
description | Since their development, AIS have been used for a number of machine learning tasks including that of classification. Within the literature, there appears to be a lack of appreciation for the possible bias in the selection of various representations and affinity measures that may be introduced when employing AIS in classification tasks. Problems are then compounded when inductive bias of algorithms are not taken into account when applying seemingly generic AIS algorithms to specific application domains. This paper is an attempt at highlighting some of these issues. Using the example of classification, this paper explains the potential pitfalls in representation selection and the use of various affinity measures. Additionally, attention is given to the use of negative selection in classification and it is argued that this may be not an appropriate algorithm for such a task. This paper then presents ideas on avoiding unnecessary mistakes in the choice and design of AIS algorithms and ultimately delivered solutions. |
doi_str_mv | 10.1007/978-3-540-45192-1_22 |
format | Book Chapter |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_15692129</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC3088179_27_240</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-3990319fda5f4ac9bdd87067860af0a961ecf60faa457c431badb42d865520a03</originalsourceid><addsrcrecordid>eNotkEtvHCEQhMlT2Tj7D3LgkiNJQzMw5Lay4sSSJVt5KEfEMGCTzGMDrCX_-7Br96WlquqW6iPkPYePHEB_MrpnyDoJTHbcCMatEM_ItsnYxJPGn5MNV5wzRGlekLcnA7RS5iXZAIJgRkt8TTam-T1Ird6QbSl_oA0K3qIb8vt7uE8l1bTc0noX6MV6WEZX07oUuka6yzXF5JOb6OU8H5ZAfzyUGubyme7oTV6HKczsOqew1DDSm5DLPvia7sM78iq6qYTt0z4jvy6-_Dz_xq6uv16e766YR4GVoTGA3MTRdVE6b4Zx7DUo3StwEZxRPPioIDonO-0l8sGNgxRjr7pOgAM8Ix8e_-5d8W6K2S0-FbvPaXb5wfJONU7CtJx4zJVmLbch22Fd_xbLwR5x28bVom0A7QmtPeJuR_j0PK__DqFUG45XvrXNbvJ3bl9bY4vQ91wbK7QVEvA_4U991g</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC3088179_27_240</pqid></control><display><type>book_chapter</type><title>Revisiting the Foundations of Artificial Immune Systems: A Problem-Oriented Perspective</title><source>Springer Books</source><creator>Freitas, Alex A. ; Timmis, Jon</creator><contributor>Hart, Emma ; Bentley, Peter ; Timmis, Jon</contributor><creatorcontrib>Freitas, Alex A. ; Timmis, Jon ; Hart, Emma ; Bentley, Peter ; Timmis, Jon</creatorcontrib><description>Since their development, AIS have been used for a number of machine learning tasks including that of classification. Within the literature, there appears to be a lack of appreciation for the possible bias in the selection of various representations and affinity measures that may be introduced when employing AIS in classification tasks. Problems are then compounded when inductive bias of algorithms are not taken into account when applying seemingly generic AIS algorithms to specific application domains. This paper is an attempt at highlighting some of these issues. Using the example of classification, this paper explains the potential pitfalls in representation selection and the use of various affinity measures. Additionally, attention is given to the use of negative selection in classification and it is argued that this may be not an appropriate algorithm for such a task. This paper then presents ideas on avoiding unnecessary mistakes in the choice and design of AIS algorithms and ultimately delivered solutions.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540407669</identifier><identifier>ISBN: 9783540407669</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540451921</identifier><identifier>EISBN: 3540451927</identifier><identifier>DOI: 10.1007/978-3-540-45192-1_22</identifier><identifier>OCLC: 934980476</identifier><identifier>LCCallNum: QA75.5-76.95</identifier><language>eng</language><publisher>Germany: Springer Berlin / Heidelberg</publisher><subject>Applied sciences ; Artificial Immune System ; Artificial intelligence ; Categorical Attribute ; Classification Algorithm ; Classification Task ; Computer science; control theory; systems ; Distance Metrics ; Exact sciences and technology ; Pattern recognition. Digital image processing. Computational geometry ; Software ; Speech and sound recognition and synthesis. Linguistics</subject><ispartof>Artificial Immune Systems, 2003, Vol.2787, p.229-241</ispartof><rights>Springer-Verlag Berlin Heidelberg 2003</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c323t-3990319fda5f4ac9bdd87067860af0a961ecf60faa457c431badb42d865520a03</citedby><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/3088179-l.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/978-3-540-45192-1_22$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/978-3-540-45192-1_22$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4036,4037,27902,38232,41418,42487</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15692129$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Hart, Emma</contributor><contributor>Bentley, Peter</contributor><contributor>Timmis, Jon</contributor><creatorcontrib>Freitas, Alex A.</creatorcontrib><creatorcontrib>Timmis, Jon</creatorcontrib><title>Revisiting the Foundations of Artificial Immune Systems: A Problem-Oriented Perspective</title><title>Artificial Immune Systems</title><description>Since their development, AIS have been used for a number of machine learning tasks including that of classification. Within the literature, there appears to be a lack of appreciation for the possible bias in the selection of various representations and affinity measures that may be introduced when employing AIS in classification tasks. Problems are then compounded when inductive bias of algorithms are not taken into account when applying seemingly generic AIS algorithms to specific application domains. This paper is an attempt at highlighting some of these issues. Using the example of classification, this paper explains the potential pitfalls in representation selection and the use of various affinity measures. Additionally, attention is given to the use of negative selection in classification and it is argued that this may be not an appropriate algorithm for such a task. This paper then presents ideas on avoiding unnecessary mistakes in the choice and design of AIS algorithms and ultimately delivered solutions.</description><subject>Applied sciences</subject><subject>Artificial Immune System</subject><subject>Artificial intelligence</subject><subject>Categorical Attribute</subject><subject>Classification Algorithm</subject><subject>Classification Task</subject><subject>Computer science; control theory; systems</subject><subject>Distance Metrics</subject><subject>Exact sciences and technology</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Software</subject><subject>Speech and sound recognition and synthesis. Linguistics</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540407669</isbn><isbn>9783540407669</isbn><isbn>9783540451921</isbn><isbn>3540451927</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2003</creationdate><recordtype>book_chapter</recordtype><recordid>eNotkEtvHCEQhMlT2Tj7D3LgkiNJQzMw5Lay4sSSJVt5KEfEMGCTzGMDrCX_-7Br96WlquqW6iPkPYePHEB_MrpnyDoJTHbcCMatEM_ItsnYxJPGn5MNV5wzRGlekLcnA7RS5iXZAIJgRkt8TTam-T1Ird6QbSl_oA0K3qIb8vt7uE8l1bTc0noX6MV6WEZX07oUuka6yzXF5JOb6OU8H5ZAfzyUGubyme7oTV6HKczsOqew1DDSm5DLPvia7sM78iq6qYTt0z4jvy6-_Dz_xq6uv16e766YR4GVoTGA3MTRdVE6b4Zx7DUo3StwEZxRPPioIDonO-0l8sGNgxRjr7pOgAM8Ix8e_-5d8W6K2S0-FbvPaXb5wfJONU7CtJx4zJVmLbch22Fd_xbLwR5x28bVom0A7QmtPeJuR_j0PK__DqFUG45XvrXNbvJ3bl9bY4vQ91wbK7QVEvA_4U991g</recordid><startdate>2003</startdate><enddate>2003</enddate><creator>Freitas, Alex A.</creator><creator>Timmis, Jon</creator><general>Springer Berlin / Heidelberg</general><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>FFUUA</scope><scope>IQODW</scope></search><sort><creationdate>2003</creationdate><title>Revisiting the Foundations of Artificial Immune Systems: A Problem-Oriented Perspective</title><author>Freitas, Alex A. ; Timmis, Jon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-3990319fda5f4ac9bdd87067860af0a961ecf60faa457c431badb42d865520a03</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Applied sciences</topic><topic>Artificial Immune System</topic><topic>Artificial intelligence</topic><topic>Categorical Attribute</topic><topic>Classification Algorithm</topic><topic>Classification Task</topic><topic>Computer science; control theory; systems</topic><topic>Distance Metrics</topic><topic>Exact sciences and technology</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Software</topic><topic>Speech and sound recognition and synthesis. Linguistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Freitas, Alex A.</creatorcontrib><creatorcontrib>Timmis, Jon</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Freitas, Alex A.</au><au>Timmis, Jon</au><au>Hart, Emma</au><au>Bentley, Peter</au><au>Timmis, Jon</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Revisiting the Foundations of Artificial Immune Systems: A Problem-Oriented Perspective</atitle><btitle>Artificial Immune Systems</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2003</date><risdate>2003</risdate><volume>2787</volume><spage>229</spage><epage>241</epage><pages>229-241</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540407669</isbn><isbn>9783540407669</isbn><eisbn>9783540451921</eisbn><eisbn>3540451927</eisbn><abstract>Since their development, AIS have been used for a number of machine learning tasks including that of classification. Within the literature, there appears to be a lack of appreciation for the possible bias in the selection of various representations and affinity measures that may be introduced when employing AIS in classification tasks. Problems are then compounded when inductive bias of algorithms are not taken into account when applying seemingly generic AIS algorithms to specific application domains. This paper is an attempt at highlighting some of these issues. Using the example of classification, this paper explains the potential pitfalls in representation selection and the use of various affinity measures. Additionally, attention is given to the use of negative selection in classification and it is argued that this may be not an appropriate algorithm for such a task. This paper then presents ideas on avoiding unnecessary mistakes in the choice and design of AIS algorithms and ultimately delivered solutions.</abstract><cop>Germany</cop><pub>Springer Berlin / Heidelberg</pub><doi>10.1007/978-3-540-45192-1_22</doi><oclcid>934980476</oclcid><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Artificial Immune Systems, 2003, Vol.2787, p.229-241 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_15692129 |
source | Springer Books |
subjects | Applied sciences Artificial Immune System Artificial intelligence Categorical Attribute Classification Algorithm Classification Task Computer science control theory systems Distance Metrics Exact sciences and technology Pattern recognition. Digital image processing. Computational geometry Software Speech and sound recognition and synthesis. Linguistics |
title | Revisiting the Foundations of Artificial Immune Systems: A Problem-Oriented Perspective |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T02%3A09%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Revisiting%20the%20Foundations%20of%20Artificial%20Immune%20Systems:%20A%20Problem-Oriented%20Perspective&rft.btitle=Artificial%20Immune%20Systems&rft.au=Freitas,%20Alex%20A.&rft.date=2003&rft.volume=2787&rft.spage=229&rft.epage=241&rft.pages=229-241&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540407669&rft.isbn_list=9783540407669&rft_id=info:doi/10.1007/978-3-540-45192-1_22&rft_dat=%3Cproquest_pasca%3EEBC3088179_27_240%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540451921&rft.eisbn_list=3540451927&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC3088179_27_240&rft_id=info:pmid/&rfr_iscdi=true |