Generalized Powering Functions and Their Application to Digital Signatures
This paper investigates some modular powering functions suitable for cryptography. It is well known that the Rabin encryption function is a 4-to-1 mapping and breaking its one-wayness is secure under the factoring assumption. The previously reported encryption schemes using a powering function are v...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 451 |
---|---|
container_issue | |
container_start_page | 434 |
container_title | |
container_volume | 2894 |
creator | Sato, Hisayoshi Takagi, Tsuyoshi Tezuka, Satoru Takaragi, Kazuo |
description | This paper investigates some modular powering functions suitable for cryptography. It is well known that the Rabin encryption function is a 4-to-1 mapping and breaking its one-wayness is secure under the factoring assumption. The previously reported encryption schemes using a powering function are variants of either the 4-to-1 mapping or higher n-to-1 mapping, where n>4. In this paper, we propose an optimized powering function that is a 3-to-1 mapping using a p2q-type modulus. The one-wayness of the proposed powering function is as hard as the infeasibility of the factoring problem. We present an efficient algorithm for computing the decryption for a p2q-type modulus, which requires neither modular inversion nor division. Moreover, we construct new provably secure digital signatures as an application of the optimized functions. In order to achieve provable security in the random oracle model, we usually randomize a message using random hashing or padding. However, we have to compute the randomization again if the randomized message is a non-cubic residue element — it is inefficient for long messages. We propose an algorithm that can deterministically find the unique cubic residue element for a randomly chosen element. |
doi_str_mv | 10.1007/978-3-540-40061-5_28 |
format | Book Chapter |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_15690374</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC3087493_34_446</sourcerecordid><originalsourceid>FETCH-LOGICAL-p316t-cd016806aa771894002cb1fa7a87993f8ecbc2e156644b12844388f268b8f3273</originalsourceid><addsrcrecordid>eNotkEtv2zAQhJkmLeo6-Qc96JIjmyWX4uNouM2jCJAATc4ERVMOW1VSSRlB8utL2d7LAjM7C8xHyFcG3xiAujJKU6S1ACoAJKO15fqEfMGi7AX8QBZMMkYRhTk9GBxqw-UZWQACp0YJ_EQWpvjKgKg_k4ucf0MZ5GDALMjPm9CH5Lr4HjbV4_AaUuy31fWu91Mc-ly5flM9vYSYqtU4dtG7Wa6mofoet3FyXfUrbns37VLI5-Rj67ocLo57SZ6vfzytb-n9w83denVPR2Ryon4DTGqQzinFtClNuG9Y65TTyhhsdfCN54HVUgrRMK6FQK1bLnWjW-QKl-Ty8Hd02buuTa73Mdsxxb8uvdkSNICl-JLww10e51Ih2WYY_mTLwM54bcFr0RZmdk_TznhLCI_P0_BvF_Jkw5zyoZ8KJf_iximkbBG0EgYtCiuExP_iynd7</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC3087493_34_446</pqid></control><display><type>book_chapter</type><title>Generalized Powering Functions and Their Application to Digital Signatures</title><source>Springer Books</source><creator>Sato, Hisayoshi ; Takagi, Tsuyoshi ; Tezuka, Satoru ; Takaragi, Kazuo</creator><contributor>Laih, Chi Sung ; Laih, Chi-Sung</contributor><creatorcontrib>Sato, Hisayoshi ; Takagi, Tsuyoshi ; Tezuka, Satoru ; Takaragi, Kazuo ; Laih, Chi Sung ; Laih, Chi-Sung</creatorcontrib><description>This paper investigates some modular powering functions suitable for cryptography. It is well known that the Rabin encryption function is a 4-to-1 mapping and breaking its one-wayness is secure under the factoring assumption. The previously reported encryption schemes using a powering function are variants of either the 4-to-1 mapping or higher n-to-1 mapping, where n>4. In this paper, we propose an optimized powering function that is a 3-to-1 mapping using a p2q-type modulus. The one-wayness of the proposed powering function is as hard as the infeasibility of the factoring problem. We present an efficient algorithm for computing the decryption for a p2q-type modulus, which requires neither modular inversion nor division. Moreover, we construct new provably secure digital signatures as an application of the optimized functions. In order to achieve provable security in the random oracle model, we usually randomize a message using random hashing or padding. However, we have to compute the randomization again if the randomized message is a non-cubic residue element — it is inefficient for long messages. We propose an algorithm that can deterministically find the unique cubic residue element for a randomly chosen element.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540205926</identifier><identifier>ISBN: 9783540205920</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540400613</identifier><identifier>EISBN: 9783540400615</identifier><identifier>DOI: 10.1007/978-3-540-40061-5_28</identifier><identifier>OCLC: 934979045</identifier><identifier>LCCallNum: QA268</identifier><language>eng</language><publisher>Germany: Springer Berlin / Heidelberg</publisher><subject>Applied sciences ; Computer science; control theory; systems ; Cryptography ; digital signature ; Exact sciences and technology ; factoring ; Information, signal and communications theory ; Memory and file management (including protection and security) ; Memory organisation. Data processing ; modular powering function ; RSA ; Signal and communications theory ; Software ; Telecommunications and information theory</subject><ispartof>Advances in Cryptology - ASIACRYPT 2003, 2003, Vol.2894, p.434-451</ispartof><rights>Springer-Verlag Berlin Heidelberg 2003</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/3087493-l.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/978-3-540-40061-5_28$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/978-3-540-40061-5_28$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4050,4051,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15690374$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Laih, Chi Sung</contributor><contributor>Laih, Chi-Sung</contributor><creatorcontrib>Sato, Hisayoshi</creatorcontrib><creatorcontrib>Takagi, Tsuyoshi</creatorcontrib><creatorcontrib>Tezuka, Satoru</creatorcontrib><creatorcontrib>Takaragi, Kazuo</creatorcontrib><title>Generalized Powering Functions and Their Application to Digital Signatures</title><title>Advances in Cryptology - ASIACRYPT 2003</title><description>This paper investigates some modular powering functions suitable for cryptography. It is well known that the Rabin encryption function is a 4-to-1 mapping and breaking its one-wayness is secure under the factoring assumption. The previously reported encryption schemes using a powering function are variants of either the 4-to-1 mapping or higher n-to-1 mapping, where n>4. In this paper, we propose an optimized powering function that is a 3-to-1 mapping using a p2q-type modulus. The one-wayness of the proposed powering function is as hard as the infeasibility of the factoring problem. We present an efficient algorithm for computing the decryption for a p2q-type modulus, which requires neither modular inversion nor division. Moreover, we construct new provably secure digital signatures as an application of the optimized functions. In order to achieve provable security in the random oracle model, we usually randomize a message using random hashing or padding. However, we have to compute the randomization again if the randomized message is a non-cubic residue element — it is inefficient for long messages. We propose an algorithm that can deterministically find the unique cubic residue element for a randomly chosen element.</description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Cryptography</subject><subject>digital signature</subject><subject>Exact sciences and technology</subject><subject>factoring</subject><subject>Information, signal and communications theory</subject><subject>Memory and file management (including protection and security)</subject><subject>Memory organisation. Data processing</subject><subject>modular powering function</subject><subject>RSA</subject><subject>Signal and communications theory</subject><subject>Software</subject><subject>Telecommunications and information theory</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540205926</isbn><isbn>9783540205920</isbn><isbn>3540400613</isbn><isbn>9783540400615</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2003</creationdate><recordtype>book_chapter</recordtype><recordid>eNotkEtv2zAQhJkmLeo6-Qc96JIjmyWX4uNouM2jCJAATc4ERVMOW1VSSRlB8utL2d7LAjM7C8xHyFcG3xiAujJKU6S1ACoAJKO15fqEfMGi7AX8QBZMMkYRhTk9GBxqw-UZWQACp0YJ_EQWpvjKgKg_k4ucf0MZ5GDALMjPm9CH5Lr4HjbV4_AaUuy31fWu91Mc-ly5flM9vYSYqtU4dtG7Wa6mofoet3FyXfUrbns37VLI5-Rj67ocLo57SZ6vfzytb-n9w83denVPR2Ryon4DTGqQzinFtClNuG9Y65TTyhhsdfCN54HVUgrRMK6FQK1bLnWjW-QKl-Ty8Hd02buuTa73Mdsxxb8uvdkSNICl-JLww10e51Ih2WYY_mTLwM54bcFr0RZmdk_TznhLCI_P0_BvF_Jkw5zyoZ8KJf_iximkbBG0EgYtCiuExP_iynd7</recordid><startdate>2003</startdate><enddate>2003</enddate><creator>Sato, Hisayoshi</creator><creator>Takagi, Tsuyoshi</creator><creator>Tezuka, Satoru</creator><creator>Takaragi, Kazuo</creator><general>Springer Berlin / Heidelberg</general><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>FFUUA</scope><scope>IQODW</scope></search><sort><creationdate>2003</creationdate><title>Generalized Powering Functions and Their Application to Digital Signatures</title><author>Sato, Hisayoshi ; Takagi, Tsuyoshi ; Tezuka, Satoru ; Takaragi, Kazuo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p316t-cd016806aa771894002cb1fa7a87993f8ecbc2e156644b12844388f268b8f3273</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Cryptography</topic><topic>digital signature</topic><topic>Exact sciences and technology</topic><topic>factoring</topic><topic>Information, signal and communications theory</topic><topic>Memory and file management (including protection and security)</topic><topic>Memory organisation. Data processing</topic><topic>modular powering function</topic><topic>RSA</topic><topic>Signal and communications theory</topic><topic>Software</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sato, Hisayoshi</creatorcontrib><creatorcontrib>Takagi, Tsuyoshi</creatorcontrib><creatorcontrib>Tezuka, Satoru</creatorcontrib><creatorcontrib>Takaragi, Kazuo</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sato, Hisayoshi</au><au>Takagi, Tsuyoshi</au><au>Tezuka, Satoru</au><au>Takaragi, Kazuo</au><au>Laih, Chi Sung</au><au>Laih, Chi-Sung</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Generalized Powering Functions and Their Application to Digital Signatures</atitle><btitle>Advances in Cryptology - ASIACRYPT 2003</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2003</date><risdate>2003</risdate><volume>2894</volume><spage>434</spage><epage>451</epage><pages>434-451</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540205926</isbn><isbn>9783540205920</isbn><eisbn>3540400613</eisbn><eisbn>9783540400615</eisbn><abstract>This paper investigates some modular powering functions suitable for cryptography. It is well known that the Rabin encryption function is a 4-to-1 mapping and breaking its one-wayness is secure under the factoring assumption. The previously reported encryption schemes using a powering function are variants of either the 4-to-1 mapping or higher n-to-1 mapping, where n>4. In this paper, we propose an optimized powering function that is a 3-to-1 mapping using a p2q-type modulus. The one-wayness of the proposed powering function is as hard as the infeasibility of the factoring problem. We present an efficient algorithm for computing the decryption for a p2q-type modulus, which requires neither modular inversion nor division. Moreover, we construct new provably secure digital signatures as an application of the optimized functions. In order to achieve provable security in the random oracle model, we usually randomize a message using random hashing or padding. However, we have to compute the randomization again if the randomized message is a non-cubic residue element — it is inefficient for long messages. We propose an algorithm that can deterministically find the unique cubic residue element for a randomly chosen element.</abstract><cop>Germany</cop><pub>Springer Berlin / Heidelberg</pub><doi>10.1007/978-3-540-40061-5_28</doi><oclcid>934979045</oclcid><tpages>18</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Advances in Cryptology - ASIACRYPT 2003, 2003, Vol.2894, p.434-451 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_15690374 |
source | Springer Books |
subjects | Applied sciences Computer science control theory systems Cryptography digital signature Exact sciences and technology factoring Information, signal and communications theory Memory and file management (including protection and security) Memory organisation. Data processing modular powering function RSA Signal and communications theory Software Telecommunications and information theory |
title | Generalized Powering Functions and Their Application to Digital Signatures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T22%3A04%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Generalized%20Powering%20Functions%20and%20Their%20Application%20to%20Digital%20Signatures&rft.btitle=Advances%20in%20Cryptology%20-%20ASIACRYPT%202003&rft.au=Sato,%20Hisayoshi&rft.date=2003&rft.volume=2894&rft.spage=434&rft.epage=451&rft.pages=434-451&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540205926&rft.isbn_list=9783540205920&rft_id=info:doi/10.1007/978-3-540-40061-5_28&rft_dat=%3Cproquest_pasca%3EEBC3087493_34_446%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540400613&rft.eisbn_list=9783540400615&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC3087493_34_446&rft_id=info:pmid/&rfr_iscdi=true |