Computation of Cryptographic Keys from Face Biometrics
We outline cryptographic key-computation from biometric data based on error-tolerant transformation of continuous-valued face eigenprojections to zero-error bitstrings suitable for cryptographic applicability. Bio-hashing is based on iterated inner-products between pseudorandom and user-specific eig...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We outline cryptographic key-computation from biometric data based on error-tolerant transformation of continuous-valued face eigenprojections to zero-error bitstrings suitable for cryptographic applicability. Bio-hashing is based on iterated inner-products between pseudorandom and user-specific eigenprojections, each of which extracts a single-bit from the face data. This discretisation is highly tolerant of data capture offsets, with same-user face data resulting in highly correlated bitstrings. The resultant user identification in terms of a small bitstring-set is then securely reduced to a single cryptographic key via Shamir secret-sharing. Generation of the pseudorandom eigenprojection sequence can be securely parameterised via incorporation of physical tokens. Tokenised bio-hashing is rigorously protective of the face data, with security comparable to cryptographic hashing of token and knowledge key-factors. Our methodology has several major advantages over conventional biometric analysis ie elimination of false accepts (FA) without unacceptable compromise in terms of more probable false rejects (FR), straightforward key-management, and cryptographically rigorous commitment of biometric data in conjunction with verification thereof. |
---|---|
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/978-3-540-45184-6_1 |