Using Prior Shape and Points in Medical Image Segmentation

In this paper we present a new variational framework in level set form for image segmentation, which incorporates both a prior shape and prior fixed locations of a small number of points. The idea underlying the model is the creation of two energy terms in the energy function for the geodesic active...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Chen, Yunmei, Guo, Weihong, Huang, Feng, Wilson, David, Geiser, Edward A.
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 305
container_issue
container_start_page 291
container_title
container_volume 2683
creator Chen, Yunmei
Guo, Weihong
Huang, Feng
Wilson, David
Geiser, Edward A.
description In this paper we present a new variational framework in level set form for image segmentation, which incorporates both a prior shape and prior fixed locations of a small number of points. The idea underlying the model is the creation of two energy terms in the energy function for the geodesic active contours. The first energy term is for the shape, the second for the locations of the points In this model, segmentation is achieved through a registration technique, which combines a rigid transformation and a local deformation. The rigid transformation is determined explicitly by using shape information, while the local deformation is determined implicitly by using image gradients and prior locations. We report experimental results on both synthetic and ultrasound images. These results compared with the results obtained by using a previously reported model, which only incorporates a shape prior into the active contours.
doi_str_mv 10.1007/978-3-540-45063-4_19
format Book Chapter
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_15672805</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC3087339_10_299</sourcerecordid><originalsourceid>FETCH-LOGICAL-p272t-cd9185b129835d31d0a04a04cdda269be9ad4c843bb96ab10f801ba1a91306813</originalsourceid><addsrcrecordid>eNpFkE1PwzAMhsOnqMb-AYdeOAacOP0wN4T4mDTEpLFzlLZZKWxtScqBf0-6TcKyZOm1_cp-GLsScCMAslvKco48UcBVAilypQUdsWmQMYg7TR2zSKRCcERFJ_89UJTTKYsAQXLKFJ6ziBJM00RSdsGm3n9CCJSSQEXsbuWbto4XrulcvPwwvY1NW8WLrmkHHzdt_GqrpjSbeLY1tY2Xtt7adjBD07WX7GxtNt5OD3XCVk-P7w8vfP72PHu4n_NeZnLgZUUiTwohKRxYoajAgApZVpWRKRWWTKXKXGFRUGoKAescRGGEIYGQ5gIn7Hrv2xsfLlk705aN171rtsb9apGkmcwhCXNyP-dDq62t00XXfXktQI9QdSCkUQdGegdQj1DDEh7MXff9Y_2g7bhVhied2ZQByGCd1wh5hkijlyTCPxIocs4</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC3087339_10_299</pqid></control><display><type>book_chapter</type><title>Using Prior Shape and Points in Medical Image Segmentation</title><source>Springer Books</source><creator>Chen, Yunmei ; Guo, Weihong ; Huang, Feng ; Wilson, David ; Geiser, Edward A.</creator><contributor>Zerubia, Josiane ; Figueiredo, Mário A. T ; Rangarajan, Anand ; Rangarajan, Anand ; Zerubia, Josiane ; Figueiredo, Mário</contributor><creatorcontrib>Chen, Yunmei ; Guo, Weihong ; Huang, Feng ; Wilson, David ; Geiser, Edward A. ; Zerubia, Josiane ; Figueiredo, Mário A. T ; Rangarajan, Anand ; Rangarajan, Anand ; Zerubia, Josiane ; Figueiredo, Mário</creatorcontrib><description>In this paper we present a new variational framework in level set form for image segmentation, which incorporates both a prior shape and prior fixed locations of a small number of points. The idea underlying the model is the creation of two energy terms in the energy function for the geodesic active contours. The first energy term is for the shape, the second for the locations of the points In this model, segmentation is achieved through a registration technique, which combines a rigid transformation and a local deformation. The rigid transformation is determined explicitly by using shape information, while the local deformation is determined implicitly by using image gradients and prior locations. We report experimental results on both synthetic and ultrasound images. These results compared with the results obtained by using a previously reported model, which only incorporates a shape prior into the active contours.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540404989</identifier><identifier>ISBN: 3540404988</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540450634</identifier><identifier>EISBN: 3540450637</identifier><identifier>DOI: 10.1007/978-3-540-45063-4_19</identifier><identifier>OCLC: 953665297</identifier><identifier>LCCallNum: TA1634</identifier><language>eng</language><publisher>Germany: Springer Berlin / Heidelberg</publisher><subject>active contours ; Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; energy minimization ; Exact sciences and technology ; level set methods ; Pattern recognition. Digital image processing. Computational geometry ; Prior shape and points ; Software</subject><ispartof>Energy Minimization Methods in Computer Vision and Pattern Recognition, 2003, Vol.2683, p.291-305</ispartof><rights>Springer-Verlag Berlin Heidelberg 2003</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/3087339-l.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/978-3-540-45063-4_19$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/978-3-540-45063-4_19$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4036,4037,27902,38232,41418,42487</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15672805$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Zerubia, Josiane</contributor><contributor>Figueiredo, Mário A. T</contributor><contributor>Rangarajan, Anand</contributor><contributor>Rangarajan, Anand</contributor><contributor>Zerubia, Josiane</contributor><contributor>Figueiredo, Mário</contributor><creatorcontrib>Chen, Yunmei</creatorcontrib><creatorcontrib>Guo, Weihong</creatorcontrib><creatorcontrib>Huang, Feng</creatorcontrib><creatorcontrib>Wilson, David</creatorcontrib><creatorcontrib>Geiser, Edward A.</creatorcontrib><title>Using Prior Shape and Points in Medical Image Segmentation</title><title>Energy Minimization Methods in Computer Vision and Pattern Recognition</title><description>In this paper we present a new variational framework in level set form for image segmentation, which incorporates both a prior shape and prior fixed locations of a small number of points. The idea underlying the model is the creation of two energy terms in the energy function for the geodesic active contours. The first energy term is for the shape, the second for the locations of the points In this model, segmentation is achieved through a registration technique, which combines a rigid transformation and a local deformation. The rigid transformation is determined explicitly by using shape information, while the local deformation is determined implicitly by using image gradients and prior locations. We report experimental results on both synthetic and ultrasound images. These results compared with the results obtained by using a previously reported model, which only incorporates a shape prior into the active contours.</description><subject>active contours</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>energy minimization</subject><subject>Exact sciences and technology</subject><subject>level set methods</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Prior shape and points</subject><subject>Software</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540404989</isbn><isbn>3540404988</isbn><isbn>9783540450634</isbn><isbn>3540450637</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2003</creationdate><recordtype>book_chapter</recordtype><recordid>eNpFkE1PwzAMhsOnqMb-AYdeOAacOP0wN4T4mDTEpLFzlLZZKWxtScqBf0-6TcKyZOm1_cp-GLsScCMAslvKco48UcBVAilypQUdsWmQMYg7TR2zSKRCcERFJ_89UJTTKYsAQXLKFJ6ziBJM00RSdsGm3n9CCJSSQEXsbuWbto4XrulcvPwwvY1NW8WLrmkHHzdt_GqrpjSbeLY1tY2Xtt7adjBD07WX7GxtNt5OD3XCVk-P7w8vfP72PHu4n_NeZnLgZUUiTwohKRxYoajAgApZVpWRKRWWTKXKXGFRUGoKAescRGGEIYGQ5gIn7Hrv2xsfLlk705aN171rtsb9apGkmcwhCXNyP-dDq62t00XXfXktQI9QdSCkUQdGegdQj1DDEh7MXff9Y_2g7bhVhied2ZQByGCd1wh5hkijlyTCPxIocs4</recordid><startdate>2003</startdate><enddate>2003</enddate><creator>Chen, Yunmei</creator><creator>Guo, Weihong</creator><creator>Huang, Feng</creator><creator>Wilson, David</creator><creator>Geiser, Edward A.</creator><general>Springer Berlin / Heidelberg</general><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>FFUUA</scope><scope>IQODW</scope></search><sort><creationdate>2003</creationdate><title>Using Prior Shape and Points in Medical Image Segmentation</title><author>Chen, Yunmei ; Guo, Weihong ; Huang, Feng ; Wilson, David ; Geiser, Edward A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p272t-cd9185b129835d31d0a04a04cdda269be9ad4c843bb96ab10f801ba1a91306813</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2003</creationdate><topic>active contours</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>energy minimization</topic><topic>Exact sciences and technology</topic><topic>level set methods</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Prior shape and points</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Yunmei</creatorcontrib><creatorcontrib>Guo, Weihong</creatorcontrib><creatorcontrib>Huang, Feng</creatorcontrib><creatorcontrib>Wilson, David</creatorcontrib><creatorcontrib>Geiser, Edward A.</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Yunmei</au><au>Guo, Weihong</au><au>Huang, Feng</au><au>Wilson, David</au><au>Geiser, Edward A.</au><au>Zerubia, Josiane</au><au>Figueiredo, Mário A. T</au><au>Rangarajan, Anand</au><au>Rangarajan, Anand</au><au>Zerubia, Josiane</au><au>Figueiredo, Mário</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Using Prior Shape and Points in Medical Image Segmentation</atitle><btitle>Energy Minimization Methods in Computer Vision and Pattern Recognition</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2003</date><risdate>2003</risdate><volume>2683</volume><spage>291</spage><epage>305</epage><pages>291-305</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540404989</isbn><isbn>3540404988</isbn><eisbn>9783540450634</eisbn><eisbn>3540450637</eisbn><abstract>In this paper we present a new variational framework in level set form for image segmentation, which incorporates both a prior shape and prior fixed locations of a small number of points. The idea underlying the model is the creation of two energy terms in the energy function for the geodesic active contours. The first energy term is for the shape, the second for the locations of the points In this model, segmentation is achieved through a registration technique, which combines a rigid transformation and a local deformation. The rigid transformation is determined explicitly by using shape information, while the local deformation is determined implicitly by using image gradients and prior locations. We report experimental results on both synthetic and ultrasound images. These results compared with the results obtained by using a previously reported model, which only incorporates a shape prior into the active contours.</abstract><cop>Germany</cop><pub>Springer Berlin / Heidelberg</pub><doi>10.1007/978-3-540-45063-4_19</doi><oclcid>953665297</oclcid><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Energy Minimization Methods in Computer Vision and Pattern Recognition, 2003, Vol.2683, p.291-305
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_15672805
source Springer Books
subjects active contours
Applied sciences
Artificial intelligence
Computer science
control theory
systems
energy minimization
Exact sciences and technology
level set methods
Pattern recognition. Digital image processing. Computational geometry
Prior shape and points
Software
title Using Prior Shape and Points in Medical Image Segmentation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T16%3A47%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Using%20Prior%20Shape%20and%20Points%20in%20Medical%20Image%20Segmentation&rft.btitle=Energy%20Minimization%20Methods%20in%20Computer%20Vision%20and%20Pattern%20Recognition&rft.au=Chen,%20Yunmei&rft.date=2003&rft.volume=2683&rft.spage=291&rft.epage=305&rft.pages=291-305&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540404989&rft.isbn_list=3540404988&rft_id=info:doi/10.1007/978-3-540-45063-4_19&rft_dat=%3Cproquest_pasca%3EEBC3087339_10_299%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540450634&rft.eisbn_list=3540450637&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC3087339_10_299&rft_id=info:pmid/&rfr_iscdi=true