Algorithms for Graph Rigidity and Scene Analysis

We investigate algorithmic questions and structural problems concerning graph families defined by ‘edge-counts’. Motivated by recent developments in the unique realization problem of graphs, we give an efficient algorithm to compute the rigid, redundantly rigid, M-connected, and globally rigid compo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Berg, Alex R., Jordán, Tibor
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 89
container_issue
container_start_page 78
container_title
container_volume
creator Berg, Alex R.
Jordán, Tibor
description We investigate algorithmic questions and structural problems concerning graph families defined by ‘edge-counts’. Motivated by recent developments in the unique realization problem of graphs, we give an efficient algorithm to compute the rigid, redundantly rigid, M-connected, and globally rigid components of a graph. Our algorithm is based on (and also extends and simplifies) the idea of Hendrickson and Jacobs, as it uses orientations as the main algorithmic tool. We also consider families of bipartite graphs which occur in parallel drawings and scene analysis. We verify a conjecture of Whiteley by showing that 2d-connected bipartite graphs are d-tight. We give a new algorithm for finding a maximal d-sharp subgraph. We also answer a question of Imai and show that finding a maximum size d-sharp subgraph is NP-hard.
doi_str_mv 10.1007/978-3-540-39658-1_10
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_15672378</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>15672378</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-2992eb7c3a2910fff3164d3374f0b78b86da9e1d439c1f7d5d4c579e571e6d7c3</originalsourceid><addsrcrecordid>eNot0LlOAzEQBmBzSYSQN6DYhtLg8XjtdRlFEJAiIXHUltdHsrDZjew0eXucwDQj_XMUHyF3wB6AMfWoVUOR1oJR1LJuKBhgZ2RWYizhKYNzMgEJQBGFviA3xwFnTAp9SSYMGadaCbwms5y_WSnkAJpPCJv36zF1-802V3FM1TLZ3aZ679ad7_aHyg6--nBhCNV8sP0hd_mWXEXb5zD771Py9fz0uXihq7fl62K-og4F7inXmodWObRcA4sxIkjhEZWIrFVN20hvdQAvUDuIytdeuFrpUCsI0pe7Kbn_-7uz2dk-Jju4Lptd6rY2HQzUUnEsAFPC__ZyGQ3rkEw7jj-5CJmjnSlIBk3RMCcnc7TDX_vMWzw</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Algorithms for Graph Rigidity and Scene Analysis</title><source>Springer Books</source><creator>Berg, Alex R. ; Jordán, Tibor</creator><contributor>Zwick, Uri ; Di Battista, Giuseppe</contributor><creatorcontrib>Berg, Alex R. ; Jordán, Tibor ; Zwick, Uri ; Di Battista, Giuseppe</creatorcontrib><description>We investigate algorithmic questions and structural problems concerning graph families defined by ‘edge-counts’. Motivated by recent developments in the unique realization problem of graphs, we give an efficient algorithm to compute the rigid, redundantly rigid, M-connected, and globally rigid components of a graph. Our algorithm is based on (and also extends and simplifies) the idea of Hendrickson and Jacobs, as it uses orientations as the main algorithmic tool. We also consider families of bipartite graphs which occur in parallel drawings and scene analysis. We verify a conjecture of Whiteley by showing that 2d-connected bipartite graphs are d-tight. We give a new algorithm for finding a maximal d-sharp subgraph. We also answer a question of Imai and show that finding a maximum size d-sharp subgraph is NP-hard.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540200649</identifier><identifier>ISBN: 9783540200642</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540396581</identifier><identifier>EISBN: 3540396586</identifier><identifier>DOI: 10.1007/978-3-540-39658-1_10</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Bipartite Graph ; Computer science; control theory; systems ; Exact sciences and technology ; Incidence Graph ; Line Drawing ; Scene Analysis ; Software ; Vertex Cover</subject><ispartof>Algorithms - ESA 2003, 2003, p.78-89</ispartof><rights>Springer-Verlag Berlin Heidelberg 2003</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-2992eb7c3a2910fff3164d3374f0b78b86da9e1d439c1f7d5d4c579e571e6d7c3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/978-3-540-39658-1_10$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/978-3-540-39658-1_10$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4036,4037,27902,38232,41418,42487</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15672378$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Zwick, Uri</contributor><contributor>Di Battista, Giuseppe</contributor><creatorcontrib>Berg, Alex R.</creatorcontrib><creatorcontrib>Jordán, Tibor</creatorcontrib><title>Algorithms for Graph Rigidity and Scene Analysis</title><title>Algorithms - ESA 2003</title><description>We investigate algorithmic questions and structural problems concerning graph families defined by ‘edge-counts’. Motivated by recent developments in the unique realization problem of graphs, we give an efficient algorithm to compute the rigid, redundantly rigid, M-connected, and globally rigid components of a graph. Our algorithm is based on (and also extends and simplifies) the idea of Hendrickson and Jacobs, as it uses orientations as the main algorithmic tool. We also consider families of bipartite graphs which occur in parallel drawings and scene analysis. We verify a conjecture of Whiteley by showing that 2d-connected bipartite graphs are d-tight. We give a new algorithm for finding a maximal d-sharp subgraph. We also answer a question of Imai and show that finding a maximum size d-sharp subgraph is NP-hard.</description><subject>Applied sciences</subject><subject>Bipartite Graph</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Incidence Graph</subject><subject>Line Drawing</subject><subject>Scene Analysis</subject><subject>Software</subject><subject>Vertex Cover</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540200649</isbn><isbn>9783540200642</isbn><isbn>9783540396581</isbn><isbn>3540396586</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2003</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNot0LlOAzEQBmBzSYSQN6DYhtLg8XjtdRlFEJAiIXHUltdHsrDZjew0eXucwDQj_XMUHyF3wB6AMfWoVUOR1oJR1LJuKBhgZ2RWYizhKYNzMgEJQBGFviA3xwFnTAp9SSYMGadaCbwms5y_WSnkAJpPCJv36zF1-802V3FM1TLZ3aZ679ad7_aHyg6--nBhCNV8sP0hd_mWXEXb5zD771Py9fz0uXihq7fl62K-og4F7inXmodWObRcA4sxIkjhEZWIrFVN20hvdQAvUDuIytdeuFrpUCsI0pe7Kbn_-7uz2dk-Jju4Lptd6rY2HQzUUnEsAFPC__ZyGQ3rkEw7jj-5CJmjnSlIBk3RMCcnc7TDX_vMWzw</recordid><startdate>2003</startdate><enddate>2003</enddate><creator>Berg, Alex R.</creator><creator>Jordán, Tibor</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2003</creationdate><title>Algorithms for Graph Rigidity and Scene Analysis</title><author>Berg, Alex R. ; Jordán, Tibor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-2992eb7c3a2910fff3164d3374f0b78b86da9e1d439c1f7d5d4c579e571e6d7c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Applied sciences</topic><topic>Bipartite Graph</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Incidence Graph</topic><topic>Line Drawing</topic><topic>Scene Analysis</topic><topic>Software</topic><topic>Vertex Cover</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Berg, Alex R.</creatorcontrib><creatorcontrib>Jordán, Tibor</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Berg, Alex R.</au><au>Jordán, Tibor</au><au>Zwick, Uri</au><au>Di Battista, Giuseppe</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Algorithms for Graph Rigidity and Scene Analysis</atitle><btitle>Algorithms - ESA 2003</btitle><date>2003</date><risdate>2003</risdate><spage>78</spage><epage>89</epage><pages>78-89</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540200649</isbn><isbn>9783540200642</isbn><eisbn>9783540396581</eisbn><eisbn>3540396586</eisbn><abstract>We investigate algorithmic questions and structural problems concerning graph families defined by ‘edge-counts’. Motivated by recent developments in the unique realization problem of graphs, we give an efficient algorithm to compute the rigid, redundantly rigid, M-connected, and globally rigid components of a graph. Our algorithm is based on (and also extends and simplifies) the idea of Hendrickson and Jacobs, as it uses orientations as the main algorithmic tool. We also consider families of bipartite graphs which occur in parallel drawings and scene analysis. We verify a conjecture of Whiteley by showing that 2d-connected bipartite graphs are d-tight. We give a new algorithm for finding a maximal d-sharp subgraph. We also answer a question of Imai and show that finding a maximum size d-sharp subgraph is NP-hard.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/978-3-540-39658-1_10</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Algorithms - ESA 2003, 2003, p.78-89
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_15672378
source Springer Books
subjects Applied sciences
Bipartite Graph
Computer science
control theory
systems
Exact sciences and technology
Incidence Graph
Line Drawing
Scene Analysis
Software
Vertex Cover
title Algorithms for Graph Rigidity and Scene Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T09%3A02%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Algorithms%20for%20Graph%20Rigidity%20and%20Scene%20Analysis&rft.btitle=Algorithms%20-%20ESA%202003&rft.au=Berg,%20Alex%20R.&rft.date=2003&rft.spage=78&rft.epage=89&rft.pages=78-89&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540200649&rft.isbn_list=9783540200642&rft_id=info:doi/10.1007/978-3-540-39658-1_10&rft_dat=%3Cpascalfrancis_sprin%3E15672378%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540396581&rft.eisbn_list=3540396586&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true