Algorithms for Graph Rigidity and Scene Analysis
We investigate algorithmic questions and structural problems concerning graph families defined by ‘edge-counts’. Motivated by recent developments in the unique realization problem of graphs, we give an efficient algorithm to compute the rigid, redundantly rigid, M-connected, and globally rigid compo...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 89 |
---|---|
container_issue | |
container_start_page | 78 |
container_title | |
container_volume | |
creator | Berg, Alex R. Jordán, Tibor |
description | We investigate algorithmic questions and structural problems concerning graph families defined by ‘edge-counts’. Motivated by recent developments in the unique realization problem of graphs, we give an efficient algorithm to compute the rigid, redundantly rigid, M-connected, and globally rigid components of a graph. Our algorithm is based on (and also extends and simplifies) the idea of Hendrickson and Jacobs, as it uses orientations as the main algorithmic tool.
We also consider families of bipartite graphs which occur in parallel drawings and scene analysis. We verify a conjecture of Whiteley by showing that 2d-connected bipartite graphs are d-tight. We give a new algorithm for finding a maximal d-sharp subgraph. We also answer a question of Imai and show that finding a maximum size d-sharp subgraph is NP-hard. |
doi_str_mv | 10.1007/978-3-540-39658-1_10 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_15672378</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>15672378</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-2992eb7c3a2910fff3164d3374f0b78b86da9e1d439c1f7d5d4c579e571e6d7c3</originalsourceid><addsrcrecordid>eNot0LlOAzEQBmBzSYSQN6DYhtLg8XjtdRlFEJAiIXHUltdHsrDZjew0eXucwDQj_XMUHyF3wB6AMfWoVUOR1oJR1LJuKBhgZ2RWYizhKYNzMgEJQBGFviA3xwFnTAp9SSYMGadaCbwms5y_WSnkAJpPCJv36zF1-802V3FM1TLZ3aZ679ad7_aHyg6--nBhCNV8sP0hd_mWXEXb5zD771Py9fz0uXihq7fl62K-og4F7inXmodWObRcA4sxIkjhEZWIrFVN20hvdQAvUDuIytdeuFrpUCsI0pe7Kbn_-7uz2dk-Jju4Lptd6rY2HQzUUnEsAFPC__ZyGQ3rkEw7jj-5CJmjnSlIBk3RMCcnc7TDX_vMWzw</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Algorithms for Graph Rigidity and Scene Analysis</title><source>Springer Books</source><creator>Berg, Alex R. ; Jordán, Tibor</creator><contributor>Zwick, Uri ; Di Battista, Giuseppe</contributor><creatorcontrib>Berg, Alex R. ; Jordán, Tibor ; Zwick, Uri ; Di Battista, Giuseppe</creatorcontrib><description>We investigate algorithmic questions and structural problems concerning graph families defined by ‘edge-counts’. Motivated by recent developments in the unique realization problem of graphs, we give an efficient algorithm to compute the rigid, redundantly rigid, M-connected, and globally rigid components of a graph. Our algorithm is based on (and also extends and simplifies) the idea of Hendrickson and Jacobs, as it uses orientations as the main algorithmic tool.
We also consider families of bipartite graphs which occur in parallel drawings and scene analysis. We verify a conjecture of Whiteley by showing that 2d-connected bipartite graphs are d-tight. We give a new algorithm for finding a maximal d-sharp subgraph. We also answer a question of Imai and show that finding a maximum size d-sharp subgraph is NP-hard.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540200649</identifier><identifier>ISBN: 9783540200642</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540396581</identifier><identifier>EISBN: 3540396586</identifier><identifier>DOI: 10.1007/978-3-540-39658-1_10</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Bipartite Graph ; Computer science; control theory; systems ; Exact sciences and technology ; Incidence Graph ; Line Drawing ; Scene Analysis ; Software ; Vertex Cover</subject><ispartof>Algorithms - ESA 2003, 2003, p.78-89</ispartof><rights>Springer-Verlag Berlin Heidelberg 2003</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-2992eb7c3a2910fff3164d3374f0b78b86da9e1d439c1f7d5d4c579e571e6d7c3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/978-3-540-39658-1_10$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/978-3-540-39658-1_10$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4036,4037,27902,38232,41418,42487</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15672378$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Zwick, Uri</contributor><contributor>Di Battista, Giuseppe</contributor><creatorcontrib>Berg, Alex R.</creatorcontrib><creatorcontrib>Jordán, Tibor</creatorcontrib><title>Algorithms for Graph Rigidity and Scene Analysis</title><title>Algorithms - ESA 2003</title><description>We investigate algorithmic questions and structural problems concerning graph families defined by ‘edge-counts’. Motivated by recent developments in the unique realization problem of graphs, we give an efficient algorithm to compute the rigid, redundantly rigid, M-connected, and globally rigid components of a graph. Our algorithm is based on (and also extends and simplifies) the idea of Hendrickson and Jacobs, as it uses orientations as the main algorithmic tool.
We also consider families of bipartite graphs which occur in parallel drawings and scene analysis. We verify a conjecture of Whiteley by showing that 2d-connected bipartite graphs are d-tight. We give a new algorithm for finding a maximal d-sharp subgraph. We also answer a question of Imai and show that finding a maximum size d-sharp subgraph is NP-hard.</description><subject>Applied sciences</subject><subject>Bipartite Graph</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Incidence Graph</subject><subject>Line Drawing</subject><subject>Scene Analysis</subject><subject>Software</subject><subject>Vertex Cover</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540200649</isbn><isbn>9783540200642</isbn><isbn>9783540396581</isbn><isbn>3540396586</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2003</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNot0LlOAzEQBmBzSYSQN6DYhtLg8XjtdRlFEJAiIXHUltdHsrDZjew0eXucwDQj_XMUHyF3wB6AMfWoVUOR1oJR1LJuKBhgZ2RWYizhKYNzMgEJQBGFviA3xwFnTAp9SSYMGadaCbwms5y_WSnkAJpPCJv36zF1-802V3FM1TLZ3aZ679ad7_aHyg6--nBhCNV8sP0hd_mWXEXb5zD771Py9fz0uXihq7fl62K-og4F7inXmodWObRcA4sxIkjhEZWIrFVN20hvdQAvUDuIytdeuFrpUCsI0pe7Kbn_-7uz2dk-Jju4Lptd6rY2HQzUUnEsAFPC__ZyGQ3rkEw7jj-5CJmjnSlIBk3RMCcnc7TDX_vMWzw</recordid><startdate>2003</startdate><enddate>2003</enddate><creator>Berg, Alex R.</creator><creator>Jordán, Tibor</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2003</creationdate><title>Algorithms for Graph Rigidity and Scene Analysis</title><author>Berg, Alex R. ; Jordán, Tibor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-2992eb7c3a2910fff3164d3374f0b78b86da9e1d439c1f7d5d4c579e571e6d7c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Applied sciences</topic><topic>Bipartite Graph</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Incidence Graph</topic><topic>Line Drawing</topic><topic>Scene Analysis</topic><topic>Software</topic><topic>Vertex Cover</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Berg, Alex R.</creatorcontrib><creatorcontrib>Jordán, Tibor</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Berg, Alex R.</au><au>Jordán, Tibor</au><au>Zwick, Uri</au><au>Di Battista, Giuseppe</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Algorithms for Graph Rigidity and Scene Analysis</atitle><btitle>Algorithms - ESA 2003</btitle><date>2003</date><risdate>2003</risdate><spage>78</spage><epage>89</epage><pages>78-89</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540200649</isbn><isbn>9783540200642</isbn><eisbn>9783540396581</eisbn><eisbn>3540396586</eisbn><abstract>We investigate algorithmic questions and structural problems concerning graph families defined by ‘edge-counts’. Motivated by recent developments in the unique realization problem of graphs, we give an efficient algorithm to compute the rigid, redundantly rigid, M-connected, and globally rigid components of a graph. Our algorithm is based on (and also extends and simplifies) the idea of Hendrickson and Jacobs, as it uses orientations as the main algorithmic tool.
We also consider families of bipartite graphs which occur in parallel drawings and scene analysis. We verify a conjecture of Whiteley by showing that 2d-connected bipartite graphs are d-tight. We give a new algorithm for finding a maximal d-sharp subgraph. We also answer a question of Imai and show that finding a maximum size d-sharp subgraph is NP-hard.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/978-3-540-39658-1_10</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Algorithms - ESA 2003, 2003, p.78-89 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_15672378 |
source | Springer Books |
subjects | Applied sciences Bipartite Graph Computer science control theory systems Exact sciences and technology Incidence Graph Line Drawing Scene Analysis Software Vertex Cover |
title | Algorithms for Graph Rigidity and Scene Analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T09%3A02%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Algorithms%20for%20Graph%20Rigidity%20and%20Scene%20Analysis&rft.btitle=Algorithms%20-%20ESA%202003&rft.au=Berg,%20Alex%20R.&rft.date=2003&rft.spage=78&rft.epage=89&rft.pages=78-89&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540200649&rft.isbn_list=9783540200642&rft_id=info:doi/10.1007/978-3-540-39658-1_10&rft_dat=%3Cpascalfrancis_sprin%3E15672378%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540396581&rft.eisbn_list=3540396586&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |