A New Fisher-Based Method Applied to Face Recognition

A critical issue of applying Linear (or Fisher) Discriminant Analysis (LDA) is the singularity and instability of the within-class scatter matrix. In practice, particularly in image recognition applications such as face recognition, there are often a large number of pixels or pre-processed features...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Thomaz, Carlos E., Gillies, Duncan F.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 605
container_issue
container_start_page 596
container_title
container_volume
creator Thomaz, Carlos E.
Gillies, Duncan F.
description A critical issue of applying Linear (or Fisher) Discriminant Analysis (LDA) is the singularity and instability of the within-class scatter matrix. In practice, particularly in image recognition applications such as face recognition, there are often a large number of pixels or pre-processed features available, but the total number of training patterns is limited and commonly less than the dimension of the feature space. Hence, a considerable amount of effort has been devoted to the design of Fisher-based methods, for targeting limited sample and high dimensional problems. In this paper, a new Fisher-based method is proposed. It is based on a novel regularisation approach for the within-class scatter matrix. In order to evaluate its effectiveness, experiments on face recognition using the well-known ORL and FERET face databases were carried out and compared with similar methods, such as Fisherfaces, Chen et al.’s, Yu and Yang’s, and Yang and Yang’s LDA-based methods. In both databases, our method improved the LDA classification performance without a PCA intermediate step and using less discriminant features.
doi_str_mv 10.1007/978-3-540-45179-2_73
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_15671009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>15671009</sourcerecordid><originalsourceid>FETCH-LOGICAL-p228t-da401521a44e0edbeda3b3331fc30c2bd17f670b13c1d685cb110f1cac43da1f3</originalsourceid><addsrcrecordid>eNotkMtOwzAQRc1Loi39AxbZsDTMeJw4WZaqAaQCEoK15dhOGyhJFEdC_D1uy2o0596ZxWHsGuEWAdRdoXJOPJXAZYqq4EIrOmHziCnCAxOnbIIZIieSxRmbHgJQBPk5mwCB4IWSdMmmIXwCgIgXE5Yukhf_k5RN2PqB35vgXfLsx23nkkXf75q4jl1SGuuTN2-7TduMTddesYva7IKf_88Z-yhX78tHvn59eFou1rwXIh-5MxIwFWik9OBd5Z2hioiwtgRWVA5VnSmokCy6LE9thQg1WmMlOYM1zdjN8W9vgjW7ejCtbYLuh-bbDL8a00xFO0XsiWMvxKjd-EFXXfcVNILe29NRkyYdfeiDKb23R3_TdFw5</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A New Fisher-Based Method Applied to Face Recognition</title><source>Springer Books</source><creator>Thomaz, Carlos E. ; Gillies, Duncan F.</creator><contributor>Westenberg, Michel A. ; Petkov, Nicolai</contributor><creatorcontrib>Thomaz, Carlos E. ; Gillies, Duncan F. ; Westenberg, Michel A. ; Petkov, Nicolai</creatorcontrib><description>A critical issue of applying Linear (or Fisher) Discriminant Analysis (LDA) is the singularity and instability of the within-class scatter matrix. In practice, particularly in image recognition applications such as face recognition, there are often a large number of pixels or pre-processed features available, but the total number of training patterns is limited and commonly less than the dimension of the feature space. Hence, a considerable amount of effort has been devoted to the design of Fisher-based methods, for targeting limited sample and high dimensional problems. In this paper, a new Fisher-based method is proposed. It is based on a novel regularisation approach for the within-class scatter matrix. In order to evaluate its effectiveness, experiments on face recognition using the well-known ORL and FERET face databases were carried out and compared with similar methods, such as Fisherfaces, Chen et al.’s, Yu and Yang’s, and Yang and Yang’s LDA-based methods. In both databases, our method improved the LDA classification performance without a PCA intermediate step and using less discriminant features.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540407308</identifier><identifier>ISBN: 9783540407300</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540451792</identifier><identifier>EISBN: 354045179X</identifier><identifier>DOI: 10.1007/978-3-540-45179-2_73</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Computer science; control theory; systems ; Exact sciences and technology ; Face Recognition ; Fisher Discriminant Analysis ; High Dimensional Problem ; Linear Discriminant Analysis ; Scatter Matrix ; Software</subject><ispartof>Computer Analysis of Images and Patterns, 2003, p.596-605</ispartof><rights>Springer-Verlag Berlin Heidelberg 2003</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/978-3-540-45179-2_73$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/978-3-540-45179-2_73$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4036,4037,27902,38232,41418,42487</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15671009$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Westenberg, Michel A.</contributor><contributor>Petkov, Nicolai</contributor><creatorcontrib>Thomaz, Carlos E.</creatorcontrib><creatorcontrib>Gillies, Duncan F.</creatorcontrib><title>A New Fisher-Based Method Applied to Face Recognition</title><title>Computer Analysis of Images and Patterns</title><description>A critical issue of applying Linear (or Fisher) Discriminant Analysis (LDA) is the singularity and instability of the within-class scatter matrix. In practice, particularly in image recognition applications such as face recognition, there are often a large number of pixels or pre-processed features available, but the total number of training patterns is limited and commonly less than the dimension of the feature space. Hence, a considerable amount of effort has been devoted to the design of Fisher-based methods, for targeting limited sample and high dimensional problems. In this paper, a new Fisher-based method is proposed. It is based on a novel regularisation approach for the within-class scatter matrix. In order to evaluate its effectiveness, experiments on face recognition using the well-known ORL and FERET face databases were carried out and compared with similar methods, such as Fisherfaces, Chen et al.’s, Yu and Yang’s, and Yang and Yang’s LDA-based methods. In both databases, our method improved the LDA classification performance without a PCA intermediate step and using less discriminant features.</description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Face Recognition</subject><subject>Fisher Discriminant Analysis</subject><subject>High Dimensional Problem</subject><subject>Linear Discriminant Analysis</subject><subject>Scatter Matrix</subject><subject>Software</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540407308</isbn><isbn>9783540407300</isbn><isbn>9783540451792</isbn><isbn>354045179X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2003</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkMtOwzAQRc1Loi39AxbZsDTMeJw4WZaqAaQCEoK15dhOGyhJFEdC_D1uy2o0596ZxWHsGuEWAdRdoXJOPJXAZYqq4EIrOmHziCnCAxOnbIIZIieSxRmbHgJQBPk5mwCB4IWSdMmmIXwCgIgXE5Yukhf_k5RN2PqB35vgXfLsx23nkkXf75q4jl1SGuuTN2-7TduMTddesYva7IKf_88Z-yhX78tHvn59eFou1rwXIh-5MxIwFWik9OBd5Z2hioiwtgRWVA5VnSmokCy6LE9thQg1WmMlOYM1zdjN8W9vgjW7ejCtbYLuh-bbDL8a00xFO0XsiWMvxKjd-EFXXfcVNILe29NRkyYdfeiDKb23R3_TdFw5</recordid><startdate>2003</startdate><enddate>2003</enddate><creator>Thomaz, Carlos E.</creator><creator>Gillies, Duncan F.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2003</creationdate><title>A New Fisher-Based Method Applied to Face Recognition</title><author>Thomaz, Carlos E. ; Gillies, Duncan F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p228t-da401521a44e0edbeda3b3331fc30c2bd17f670b13c1d685cb110f1cac43da1f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Face Recognition</topic><topic>Fisher Discriminant Analysis</topic><topic>High Dimensional Problem</topic><topic>Linear Discriminant Analysis</topic><topic>Scatter Matrix</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thomaz, Carlos E.</creatorcontrib><creatorcontrib>Gillies, Duncan F.</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thomaz, Carlos E.</au><au>Gillies, Duncan F.</au><au>Westenberg, Michel A.</au><au>Petkov, Nicolai</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A New Fisher-Based Method Applied to Face Recognition</atitle><btitle>Computer Analysis of Images and Patterns</btitle><date>2003</date><risdate>2003</risdate><spage>596</spage><epage>605</epage><pages>596-605</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540407308</isbn><isbn>9783540407300</isbn><eisbn>9783540451792</eisbn><eisbn>354045179X</eisbn><abstract>A critical issue of applying Linear (or Fisher) Discriminant Analysis (LDA) is the singularity and instability of the within-class scatter matrix. In practice, particularly in image recognition applications such as face recognition, there are often a large number of pixels or pre-processed features available, but the total number of training patterns is limited and commonly less than the dimension of the feature space. Hence, a considerable amount of effort has been devoted to the design of Fisher-based methods, for targeting limited sample and high dimensional problems. In this paper, a new Fisher-based method is proposed. It is based on a novel regularisation approach for the within-class scatter matrix. In order to evaluate its effectiveness, experiments on face recognition using the well-known ORL and FERET face databases were carried out and compared with similar methods, such as Fisherfaces, Chen et al.’s, Yu and Yang’s, and Yang and Yang’s LDA-based methods. In both databases, our method improved the LDA classification performance without a PCA intermediate step and using less discriminant features.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/978-3-540-45179-2_73</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Computer Analysis of Images and Patterns, 2003, p.596-605
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_15671009
source Springer Books
subjects Applied sciences
Computer science
control theory
systems
Exact sciences and technology
Face Recognition
Fisher Discriminant Analysis
High Dimensional Problem
Linear Discriminant Analysis
Scatter Matrix
Software
title A New Fisher-Based Method Applied to Face Recognition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T21%3A19%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20New%20Fisher-Based%20Method%20Applied%20to%20Face%20Recognition&rft.btitle=Computer%20Analysis%20of%20Images%20and%20Patterns&rft.au=Thomaz,%20Carlos%20E.&rft.date=2003&rft.spage=596&rft.epage=605&rft.pages=596-605&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540407308&rft.isbn_list=9783540407300&rft_id=info:doi/10.1007/978-3-540-45179-2_73&rft_dat=%3Cpascalfrancis_sprin%3E15671009%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540451792&rft.eisbn_list=354045179X&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true