A New Fisher-Based Method Applied to Face Recognition
A critical issue of applying Linear (or Fisher) Discriminant Analysis (LDA) is the singularity and instability of the within-class scatter matrix. In practice, particularly in image recognition applications such as face recognition, there are often a large number of pixels or pre-processed features...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 605 |
---|---|
container_issue | |
container_start_page | 596 |
container_title | |
container_volume | |
creator | Thomaz, Carlos E. Gillies, Duncan F. |
description | A critical issue of applying Linear (or Fisher) Discriminant Analysis (LDA) is the singularity and instability of the within-class scatter matrix. In practice, particularly in image recognition applications such as face recognition, there are often a large number of pixels or pre-processed features available, but the total number of training patterns is limited and commonly less than the dimension of the feature space. Hence, a considerable amount of effort has been devoted to the design of Fisher-based methods, for targeting limited sample and high dimensional problems. In this paper, a new Fisher-based method is proposed. It is based on a novel regularisation approach for the within-class scatter matrix. In order to evaluate its effectiveness, experiments on face recognition using the well-known ORL and FERET face databases were carried out and compared with similar methods, such as Fisherfaces, Chen et al.’s, Yu and Yang’s, and Yang and Yang’s LDA-based methods. In both databases, our method improved the LDA classification performance without a PCA intermediate step and using less discriminant features. |
doi_str_mv | 10.1007/978-3-540-45179-2_73 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_15671009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>15671009</sourcerecordid><originalsourceid>FETCH-LOGICAL-p228t-da401521a44e0edbeda3b3331fc30c2bd17f670b13c1d685cb110f1cac43da1f3</originalsourceid><addsrcrecordid>eNotkMtOwzAQRc1Loi39AxbZsDTMeJw4WZaqAaQCEoK15dhOGyhJFEdC_D1uy2o0596ZxWHsGuEWAdRdoXJOPJXAZYqq4EIrOmHziCnCAxOnbIIZIieSxRmbHgJQBPk5mwCB4IWSdMmmIXwCgIgXE5Yukhf_k5RN2PqB35vgXfLsx23nkkXf75q4jl1SGuuTN2-7TduMTddesYva7IKf_88Z-yhX78tHvn59eFou1rwXIh-5MxIwFWik9OBd5Z2hioiwtgRWVA5VnSmokCy6LE9thQg1WmMlOYM1zdjN8W9vgjW7ejCtbYLuh-bbDL8a00xFO0XsiWMvxKjd-EFXXfcVNILe29NRkyYdfeiDKb23R3_TdFw5</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A New Fisher-Based Method Applied to Face Recognition</title><source>Springer Books</source><creator>Thomaz, Carlos E. ; Gillies, Duncan F.</creator><contributor>Westenberg, Michel A. ; Petkov, Nicolai</contributor><creatorcontrib>Thomaz, Carlos E. ; Gillies, Duncan F. ; Westenberg, Michel A. ; Petkov, Nicolai</creatorcontrib><description>A critical issue of applying Linear (or Fisher) Discriminant Analysis (LDA) is the singularity and instability of the within-class scatter matrix. In practice, particularly in image recognition applications such as face recognition, there are often a large number of pixels or pre-processed features available, but the total number of training patterns is limited and commonly less than the dimension of the feature space. Hence, a considerable amount of effort has been devoted to the design of Fisher-based methods, for targeting limited sample and high dimensional problems. In this paper, a new Fisher-based method is proposed. It is based on a novel regularisation approach for the within-class scatter matrix. In order to evaluate its effectiveness, experiments on face recognition using the well-known ORL and FERET face databases were carried out and compared with similar methods, such as Fisherfaces, Chen et al.’s, Yu and Yang’s, and Yang and Yang’s LDA-based methods. In both databases, our method improved the LDA classification performance without a PCA intermediate step and using less discriminant features.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540407308</identifier><identifier>ISBN: 9783540407300</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540451792</identifier><identifier>EISBN: 354045179X</identifier><identifier>DOI: 10.1007/978-3-540-45179-2_73</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Computer science; control theory; systems ; Exact sciences and technology ; Face Recognition ; Fisher Discriminant Analysis ; High Dimensional Problem ; Linear Discriminant Analysis ; Scatter Matrix ; Software</subject><ispartof>Computer Analysis of Images and Patterns, 2003, p.596-605</ispartof><rights>Springer-Verlag Berlin Heidelberg 2003</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/978-3-540-45179-2_73$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/978-3-540-45179-2_73$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4036,4037,27902,38232,41418,42487</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15671009$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Westenberg, Michel A.</contributor><contributor>Petkov, Nicolai</contributor><creatorcontrib>Thomaz, Carlos E.</creatorcontrib><creatorcontrib>Gillies, Duncan F.</creatorcontrib><title>A New Fisher-Based Method Applied to Face Recognition</title><title>Computer Analysis of Images and Patterns</title><description>A critical issue of applying Linear (or Fisher) Discriminant Analysis (LDA) is the singularity and instability of the within-class scatter matrix. In practice, particularly in image recognition applications such as face recognition, there are often a large number of pixels or pre-processed features available, but the total number of training patterns is limited and commonly less than the dimension of the feature space. Hence, a considerable amount of effort has been devoted to the design of Fisher-based methods, for targeting limited sample and high dimensional problems. In this paper, a new Fisher-based method is proposed. It is based on a novel regularisation approach for the within-class scatter matrix. In order to evaluate its effectiveness, experiments on face recognition using the well-known ORL and FERET face databases were carried out and compared with similar methods, such as Fisherfaces, Chen et al.’s, Yu and Yang’s, and Yang and Yang’s LDA-based methods. In both databases, our method improved the LDA classification performance without a PCA intermediate step and using less discriminant features.</description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Face Recognition</subject><subject>Fisher Discriminant Analysis</subject><subject>High Dimensional Problem</subject><subject>Linear Discriminant Analysis</subject><subject>Scatter Matrix</subject><subject>Software</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540407308</isbn><isbn>9783540407300</isbn><isbn>9783540451792</isbn><isbn>354045179X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2003</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkMtOwzAQRc1Loi39AxbZsDTMeJw4WZaqAaQCEoK15dhOGyhJFEdC_D1uy2o0596ZxWHsGuEWAdRdoXJOPJXAZYqq4EIrOmHziCnCAxOnbIIZIieSxRmbHgJQBPk5mwCB4IWSdMmmIXwCgIgXE5Yukhf_k5RN2PqB35vgXfLsx23nkkXf75q4jl1SGuuTN2-7TduMTddesYva7IKf_88Z-yhX78tHvn59eFou1rwXIh-5MxIwFWik9OBd5Z2hioiwtgRWVA5VnSmokCy6LE9thQg1WmMlOYM1zdjN8W9vgjW7ejCtbYLuh-bbDL8a00xFO0XsiWMvxKjd-EFXXfcVNILe29NRkyYdfeiDKb23R3_TdFw5</recordid><startdate>2003</startdate><enddate>2003</enddate><creator>Thomaz, Carlos E.</creator><creator>Gillies, Duncan F.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2003</creationdate><title>A New Fisher-Based Method Applied to Face Recognition</title><author>Thomaz, Carlos E. ; Gillies, Duncan F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p228t-da401521a44e0edbeda3b3331fc30c2bd17f670b13c1d685cb110f1cac43da1f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Face Recognition</topic><topic>Fisher Discriminant Analysis</topic><topic>High Dimensional Problem</topic><topic>Linear Discriminant Analysis</topic><topic>Scatter Matrix</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thomaz, Carlos E.</creatorcontrib><creatorcontrib>Gillies, Duncan F.</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thomaz, Carlos E.</au><au>Gillies, Duncan F.</au><au>Westenberg, Michel A.</au><au>Petkov, Nicolai</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A New Fisher-Based Method Applied to Face Recognition</atitle><btitle>Computer Analysis of Images and Patterns</btitle><date>2003</date><risdate>2003</risdate><spage>596</spage><epage>605</epage><pages>596-605</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540407308</isbn><isbn>9783540407300</isbn><eisbn>9783540451792</eisbn><eisbn>354045179X</eisbn><abstract>A critical issue of applying Linear (or Fisher) Discriminant Analysis (LDA) is the singularity and instability of the within-class scatter matrix. In practice, particularly in image recognition applications such as face recognition, there are often a large number of pixels or pre-processed features available, but the total number of training patterns is limited and commonly less than the dimension of the feature space. Hence, a considerable amount of effort has been devoted to the design of Fisher-based methods, for targeting limited sample and high dimensional problems. In this paper, a new Fisher-based method is proposed. It is based on a novel regularisation approach for the within-class scatter matrix. In order to evaluate its effectiveness, experiments on face recognition using the well-known ORL and FERET face databases were carried out and compared with similar methods, such as Fisherfaces, Chen et al.’s, Yu and Yang’s, and Yang and Yang’s LDA-based methods. In both databases, our method improved the LDA classification performance without a PCA intermediate step and using less discriminant features.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/978-3-540-45179-2_73</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Computer Analysis of Images and Patterns, 2003, p.596-605 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_15671009 |
source | Springer Books |
subjects | Applied sciences Computer science control theory systems Exact sciences and technology Face Recognition Fisher Discriminant Analysis High Dimensional Problem Linear Discriminant Analysis Scatter Matrix Software |
title | A New Fisher-Based Method Applied to Face Recognition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T21%3A19%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20New%20Fisher-Based%20Method%20Applied%20to%20Face%20Recognition&rft.btitle=Computer%20Analysis%20of%20Images%20and%20Patterns&rft.au=Thomaz,%20Carlos%20E.&rft.date=2003&rft.spage=596&rft.epage=605&rft.pages=596-605&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540407308&rft.isbn_list=9783540407300&rft_id=info:doi/10.1007/978-3-540-45179-2_73&rft_dat=%3Cpascalfrancis_sprin%3E15671009%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540451792&rft.eisbn_list=354045179X&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |