A real application example of a control structure selection by means of a multiobjective genetic algorithm

Control problems are clear examples of multiobjective optimization. In this kind of problems a series of objectives, some of them opposed to each other, will be optimized in order to fit some design specifications. Moreover, evolutionary algorithms have been shown to be ideal for the resolution of t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Artificial Neural Nets Problem Solving Methods 2003, p.369-376
Hauptverfasser: Sánchez, M. Parrilla, Almansa, J. Aranda
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 376
container_issue
container_start_page 369
container_title Artificial Neural Nets Problem Solving Methods
container_volume
creator Sánchez, M. Parrilla
Almansa, J. Aranda
description Control problems are clear examples of multiobjective optimization. In this kind of problems a series of objectives, some of them opposed to each other, will be optimized in order to fit some design specifications. Moreover, evolutionary algorithms have been shown to be ideal for the resolution of these kinds of problems because they work simultaneously with a set of possible solutions, thereby favoring convergence towards a global optimum. In this document we propose a way of dealing with the different objectives considered and a genetic-evolutionary algorithm that will enable some phases of the controller design to be automated. Finally, an application example of the methods outlined will be applied to the design of a controller to reduce the sickness index on a high-speed ship.
doi_str_mv 10.1007/3-540-44869-1_47
format Article
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_15670995</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>15670995</sourcerecordid><originalsourceid>FETCH-LOGICAL-g277t-ea36036f5045027974a493506edb5166f4919407f1e4c9ca6a62b6290fb0ddf13</originalsourceid><addsrcrecordid>eNpFkE1LAzEQhuMXWGrvHnPxmDrZZJPmWIpfUPCi5zCbJnVr9oNkK_rv3baCcxl434dheAi55TDnAPpesFICk3KhDONW6jMyM3ohxvCYiXMy4YpzJoQ0F_8dFJzLSzIBAQUzWoprMst5B-NIU3C5mJDdkiaPkWLfx9rhUHct9d_Y9NHTLlCkrmuH1EWah7R3wz55mn307ghWP7Tx2OYT2ezjmFa7Q_nl6da3fqgdxbjtUj18NDfkKmDMfva3p-T98eFt9czWr08vq-WabQutB-ZRKBAqlCBLKPT4NkojSlB-U5VcqSANNxJ04F4641ChKipVGAgVbDaBiym5O93tMTuMIWHr6mz7VDeYfiwvlQZjypGbn7g8Vu3WJ1t13We2HOxBuhV2dGiPgu1BuvgFaPNvqw</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A real application example of a control structure selection by means of a multiobjective genetic algorithm</title><source>Springer Books</source><creator>Sánchez, M. Parrilla ; Almansa, J. Aranda</creator><contributor>Mira, José ; Álvarez, José R.</contributor><creatorcontrib>Sánchez, M. Parrilla ; Almansa, J. Aranda ; Mira, José ; Álvarez, José R.</creatorcontrib><description>Control problems are clear examples of multiobjective optimization. In this kind of problems a series of objectives, some of them opposed to each other, will be optimized in order to fit some design specifications. Moreover, evolutionary algorithms have been shown to be ideal for the resolution of these kinds of problems because they work simultaneously with a set of possible solutions, thereby favoring convergence towards a global optimum. In this document we propose a way of dealing with the different objectives considered and a genetic-evolutionary algorithm that will enable some phases of the controller design to be automated. Finally, an application example of the methods outlined will be applied to the design of a controller to reduce the sickness index on a high-speed ship.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540402114</identifier><identifier>ISBN: 354040211X</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540448693</identifier><identifier>EISBN: 3540448691</identifier><identifier>DOI: 10.1007/3-540-44869-1_47</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Computer science; control theory; systems ; Exact sciences and technology ; Software</subject><ispartof>Artificial Neural Nets Problem Solving Methods, 2003, p.369-376</ispartof><rights>Springer-Verlag Berlin Heidelberg 2003</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/3-540-44869-1_47$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/3-540-44869-1_47$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4035,4036,27904,38234,41421,42490</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15670995$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Mira, José</contributor><contributor>Álvarez, José R.</contributor><creatorcontrib>Sánchez, M. Parrilla</creatorcontrib><creatorcontrib>Almansa, J. Aranda</creatorcontrib><title>A real application example of a control structure selection by means of a multiobjective genetic algorithm</title><title>Artificial Neural Nets Problem Solving Methods</title><description>Control problems are clear examples of multiobjective optimization. In this kind of problems a series of objectives, some of them opposed to each other, will be optimized in order to fit some design specifications. Moreover, evolutionary algorithms have been shown to be ideal for the resolution of these kinds of problems because they work simultaneously with a set of possible solutions, thereby favoring convergence towards a global optimum. In this document we propose a way of dealing with the different objectives considered and a genetic-evolutionary algorithm that will enable some phases of the controller design to be automated. Finally, an application example of the methods outlined will be applied to the design of a controller to reduce the sickness index on a high-speed ship.</description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Software</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540402114</isbn><isbn>354040211X</isbn><isbn>9783540448693</isbn><isbn>3540448691</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNpFkE1LAzEQhuMXWGrvHnPxmDrZZJPmWIpfUPCi5zCbJnVr9oNkK_rv3baCcxl434dheAi55TDnAPpesFICk3KhDONW6jMyM3ohxvCYiXMy4YpzJoQ0F_8dFJzLSzIBAQUzWoprMst5B-NIU3C5mJDdkiaPkWLfx9rhUHct9d_Y9NHTLlCkrmuH1EWah7R3wz55mn307ghWP7Tx2OYT2ezjmFa7Q_nl6da3fqgdxbjtUj18NDfkKmDMfva3p-T98eFt9czWr08vq-WabQutB-ZRKBAqlCBLKPT4NkojSlB-U5VcqSANNxJ04F4641ChKipVGAgVbDaBiym5O93tMTuMIWHr6mz7VDeYfiwvlQZjypGbn7g8Vu3WJ1t13We2HOxBuhV2dGiPgu1BuvgFaPNvqw</recordid><startdate>2003</startdate><enddate>2003</enddate><creator>Sánchez, M. Parrilla</creator><creator>Almansa, J. Aranda</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2003</creationdate><title>A real application example of a control structure selection by means of a multiobjective genetic algorithm</title><author>Sánchez, M. Parrilla ; Almansa, J. Aranda</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g277t-ea36036f5045027974a493506edb5166f4919407f1e4c9ca6a62b6290fb0ddf13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sánchez, M. Parrilla</creatorcontrib><creatorcontrib>Almansa, J. Aranda</creatorcontrib><collection>Pascal-Francis</collection><jtitle>Artificial Neural Nets Problem Solving Methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sánchez, M. Parrilla</au><au>Almansa, J. Aranda</au><au>Mira, José</au><au>Álvarez, José R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A real application example of a control structure selection by means of a multiobjective genetic algorithm</atitle><jtitle>Artificial Neural Nets Problem Solving Methods</jtitle><date>2003</date><risdate>2003</risdate><spage>369</spage><epage>376</epage><pages>369-376</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540402114</isbn><isbn>354040211X</isbn><eisbn>9783540448693</eisbn><eisbn>3540448691</eisbn><abstract>Control problems are clear examples of multiobjective optimization. In this kind of problems a series of objectives, some of them opposed to each other, will be optimized in order to fit some design specifications. Moreover, evolutionary algorithms have been shown to be ideal for the resolution of these kinds of problems because they work simultaneously with a set of possible solutions, thereby favoring convergence towards a global optimum. In this document we propose a way of dealing with the different objectives considered and a genetic-evolutionary algorithm that will enable some phases of the controller design to be automated. Finally, an application example of the methods outlined will be applied to the design of a controller to reduce the sickness index on a high-speed ship.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/3-540-44869-1_47</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Artificial Neural Nets Problem Solving Methods, 2003, p.369-376
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_15670995
source Springer Books
subjects Applied sciences
Computer science
control theory
systems
Exact sciences and technology
Software
title A real application example of a control structure selection by means of a multiobjective genetic algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T05%3A12%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20real%20application%20example%20of%20a%20control%20structure%20selection%20by%20means%20of%20a%20multiobjective%20genetic%20algorithm&rft.jtitle=Artificial%20Neural%20Nets%20Problem%20Solving%20Methods&rft.au=S%C3%A1nchez,%20M.%20Parrilla&rft.date=2003&rft.spage=369&rft.epage=376&rft.pages=369-376&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540402114&rft.isbn_list=354040211X&rft_id=info:doi/10.1007/3-540-44869-1_47&rft_dat=%3Cpascalfrancis_sprin%3E15670995%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540448693&rft.eisbn_list=3540448691&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true