Lattice Models for Context-Driven Regularization in Motion Perception
Real-world motion field patterns contain intrinsic statistic properties that allow to define Gestalts as groups of pixels sharing the same motion property. By checking the presence of such Gestalts in optic flow fields we can make their interpretation more confident. We propose a context-sensitive r...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 42 |
---|---|
container_issue | |
container_start_page | 35 |
container_title | |
container_volume | 2859 |
creator | Sabatini, Silvio P. Solari, Fabio Bisio, Giacomo M. |
description | Real-world motion field patterns contain intrinsic statistic properties that allow to define Gestalts as groups of pixels sharing the same motion property. By checking the presence of such Gestalts in optic flow fields we can make their interpretation more confident. We propose a context-sensitive recurrent filter capable of evidencing motion Gestalts corresponding to 1st-order elementary flow components (EFCs). A Gestalt emerges from a noisy flow as a solution of an iterative process of spatially interacting nodes that correlates the properties of the visual context with that of a structural model of the Gestalt. By proper specification of the interconnection scheme, the approach can be straightforwardly extended to model any type of multimodal spatio-temporal relationships (i.e., multimodal spatiotemporal context). |
doi_str_mv | 10.1007/978-3-540-45216-4_3 |
format | Book Chapter |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_15618628</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC3087460_11_42</sourcerecordid><originalsourceid>FETCH-LOGICAL-p268t-56e20fccdce6ee755dd9e3309c5609988f592207924931cf07dbdbf608abfa423</originalsourceid><addsrcrecordid>eNotkE1PGzEQht1SKtI0v4DLXjgaxvb661iFlFYKAiF6thzvbFhYdre2g9r--johvnjG88wr6yHknMElA9BXVhsqqKyB1pIzRWsnPpAvojwcevORzJhijApR2xOyKPh-xoFzzT6RGQjg1OpafCYzWxBtrFBnZJHSM5QjuGTAZmS19jl3AavbscE-Ve0Yq-U4ZPyT6XXs3nCoHnC7633s_vncjUPVDYU9VPcYA0778is5bX2fcHG85-TX99Xj8gdd3938XH5b04krk6lUyKENoQmoELWUTWNRCLBBKrDWmFZazkFbXlvBQgu62TSbVoHxm9bXXMzJxXvu5FPwfRv9ELrkpti9-vjXMamYUdwUjr1zqYyGLUa3GceX5Bi4vVtXbDjhii53cOmK27LDj9lx_L3DlB3ulwIOOfo-PPkpY0xOgNG1KjnMlQ_9B88FdtI</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC3087460_11_42</pqid></control><display><type>book_chapter</type><title>Lattice Models for Context-Driven Regularization in Motion Perception</title><source>Springer Books</source><creator>Sabatini, Silvio P. ; Solari, Fabio ; Bisio, Giacomo M.</creator><contributor>Apolloni, Bruno ; Tagliaferri, Roberto ; Marinaro, Maria ; Tagliaferri, Roberto ; Apolloni, Bruno ; Marinaro, Maria</contributor><creatorcontrib>Sabatini, Silvio P. ; Solari, Fabio ; Bisio, Giacomo M. ; Apolloni, Bruno ; Tagliaferri, Roberto ; Marinaro, Maria ; Tagliaferri, Roberto ; Apolloni, Bruno ; Marinaro, Maria</creatorcontrib><description>Real-world motion field patterns contain intrinsic statistic properties that allow to define Gestalts as groups of pixels sharing the same motion property. By checking the presence of such Gestalts in optic flow fields we can make their interpretation more confident. We propose a context-sensitive recurrent filter capable of evidencing motion Gestalts corresponding to 1st-order elementary flow components (EFCs). A Gestalt emerges from a noisy flow as a solution of an iterative process of spatially interacting nodes that correlates the properties of the visual context with that of a structural model of the Gestalt. By proper specification of the interconnection scheme, the approach can be straightforwardly extended to model any type of multimodal spatio-temporal relationships (i.e., multimodal spatiotemporal context).</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540202271</identifier><identifier>ISBN: 3540202277</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540452168</identifier><identifier>EISBN: 9783540452164</identifier><identifier>DOI: 10.1007/978-3-540-45216-4_3</identifier><identifier>OCLC: 934978936</identifier><identifier>LCCallNum: Q334-342</identifier><language>eng</language><publisher>Germany: Springer Berlin / Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Distal Stimulus ; Exact sciences and technology ; Motion Perception ; Motion Property ; Motion Segmentation ; Pattern recognition. Digital image processing. Computational geometry ; Process Equation</subject><ispartof>Lecture notes in computer science, 2003, Vol.2859, p.35-42</ispartof><rights>Springer-Verlag Berlin Heidelberg 2003</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/3087460-l.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/978-3-540-45216-4_3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/978-3-540-45216-4_3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4035,4036,27904,38234,41421,42490</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15618628$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Apolloni, Bruno</contributor><contributor>Tagliaferri, Roberto</contributor><contributor>Marinaro, Maria</contributor><contributor>Tagliaferri, Roberto</contributor><contributor>Apolloni, Bruno</contributor><contributor>Marinaro, Maria</contributor><creatorcontrib>Sabatini, Silvio P.</creatorcontrib><creatorcontrib>Solari, Fabio</creatorcontrib><creatorcontrib>Bisio, Giacomo M.</creatorcontrib><title>Lattice Models for Context-Driven Regularization in Motion Perception</title><title>Lecture notes in computer science</title><description>Real-world motion field patterns contain intrinsic statistic properties that allow to define Gestalts as groups of pixels sharing the same motion property. By checking the presence of such Gestalts in optic flow fields we can make their interpretation more confident. We propose a context-sensitive recurrent filter capable of evidencing motion Gestalts corresponding to 1st-order elementary flow components (EFCs). A Gestalt emerges from a noisy flow as a solution of an iterative process of spatially interacting nodes that correlates the properties of the visual context with that of a structural model of the Gestalt. By proper specification of the interconnection scheme, the approach can be straightforwardly extended to model any type of multimodal spatio-temporal relationships (i.e., multimodal spatiotemporal context).</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Distal Stimulus</subject><subject>Exact sciences and technology</subject><subject>Motion Perception</subject><subject>Motion Property</subject><subject>Motion Segmentation</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Process Equation</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540202271</isbn><isbn>3540202277</isbn><isbn>3540452168</isbn><isbn>9783540452164</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2003</creationdate><recordtype>book_chapter</recordtype><recordid>eNotkE1PGzEQht1SKtI0v4DLXjgaxvb661iFlFYKAiF6thzvbFhYdre2g9r--johvnjG88wr6yHknMElA9BXVhsqqKyB1pIzRWsnPpAvojwcevORzJhijApR2xOyKPh-xoFzzT6RGQjg1OpafCYzWxBtrFBnZJHSM5QjuGTAZmS19jl3AavbscE-Ve0Yq-U4ZPyT6XXs3nCoHnC7633s_vncjUPVDYU9VPcYA0778is5bX2fcHG85-TX99Xj8gdd3938XH5b04krk6lUyKENoQmoELWUTWNRCLBBKrDWmFZazkFbXlvBQgu62TSbVoHxm9bXXMzJxXvu5FPwfRv9ELrkpti9-vjXMamYUdwUjr1zqYyGLUa3GceX5Bi4vVtXbDjhii53cOmK27LDj9lx_L3DlB3ulwIOOfo-PPkpY0xOgNG1KjnMlQ_9B88FdtI</recordid><startdate>2003</startdate><enddate>2003</enddate><creator>Sabatini, Silvio P.</creator><creator>Solari, Fabio</creator><creator>Bisio, Giacomo M.</creator><general>Springer Berlin / Heidelberg</general><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>FFUUA</scope><scope>IQODW</scope></search><sort><creationdate>2003</creationdate><title>Lattice Models for Context-Driven Regularization in Motion Perception</title><author>Sabatini, Silvio P. ; Solari, Fabio ; Bisio, Giacomo M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p268t-56e20fccdce6ee755dd9e3309c5609988f592207924931cf07dbdbf608abfa423</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Distal Stimulus</topic><topic>Exact sciences and technology</topic><topic>Motion Perception</topic><topic>Motion Property</topic><topic>Motion Segmentation</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Process Equation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sabatini, Silvio P.</creatorcontrib><creatorcontrib>Solari, Fabio</creatorcontrib><creatorcontrib>Bisio, Giacomo M.</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sabatini, Silvio P.</au><au>Solari, Fabio</au><au>Bisio, Giacomo M.</au><au>Apolloni, Bruno</au><au>Tagliaferri, Roberto</au><au>Marinaro, Maria</au><au>Tagliaferri, Roberto</au><au>Apolloni, Bruno</au><au>Marinaro, Maria</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Lattice Models for Context-Driven Regularization in Motion Perception</atitle><btitle>Lecture notes in computer science</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2003</date><risdate>2003</risdate><volume>2859</volume><spage>35</spage><epage>42</epage><pages>35-42</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540202271</isbn><isbn>3540202277</isbn><eisbn>3540452168</eisbn><eisbn>9783540452164</eisbn><abstract>Real-world motion field patterns contain intrinsic statistic properties that allow to define Gestalts as groups of pixels sharing the same motion property. By checking the presence of such Gestalts in optic flow fields we can make their interpretation more confident. We propose a context-sensitive recurrent filter capable of evidencing motion Gestalts corresponding to 1st-order elementary flow components (EFCs). A Gestalt emerges from a noisy flow as a solution of an iterative process of spatially interacting nodes that correlates the properties of the visual context with that of a structural model of the Gestalt. By proper specification of the interconnection scheme, the approach can be straightforwardly extended to model any type of multimodal spatio-temporal relationships (i.e., multimodal spatiotemporal context).</abstract><cop>Germany</cop><pub>Springer Berlin / Heidelberg</pub><doi>10.1007/978-3-540-45216-4_3</doi><oclcid>934978936</oclcid><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Lecture notes in computer science, 2003, Vol.2859, p.35-42 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_15618628 |
source | Springer Books |
subjects | Applied sciences Artificial intelligence Computer science control theory systems Distal Stimulus Exact sciences and technology Motion Perception Motion Property Motion Segmentation Pattern recognition. Digital image processing. Computational geometry Process Equation |
title | Lattice Models for Context-Driven Regularization in Motion Perception |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T10%3A14%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Lattice%20Models%20for%20Context-Driven%20Regularization%20in%20Motion%20Perception&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=Sabatini,%20Silvio%20P.&rft.date=2003&rft.volume=2859&rft.spage=35&rft.epage=42&rft.pages=35-42&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540202271&rft.isbn_list=3540202277&rft_id=info:doi/10.1007/978-3-540-45216-4_3&rft_dat=%3Cproquest_pasca%3EEBC3087460_11_42%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540452168&rft.eisbn_list=9783540452164&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC3087460_11_42&rft_id=info:pmid/&rfr_iscdi=true |