Lattice Models for Context-Driven Regularization in Motion Perception

Real-world motion field patterns contain intrinsic statistic properties that allow to define Gestalts as groups of pixels sharing the same motion property. By checking the presence of such Gestalts in optic flow fields we can make their interpretation more confident. We propose a context-sensitive r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Sabatini, Silvio P., Solari, Fabio, Bisio, Giacomo M.
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 42
container_issue
container_start_page 35
container_title
container_volume 2859
creator Sabatini, Silvio P.
Solari, Fabio
Bisio, Giacomo M.
description Real-world motion field patterns contain intrinsic statistic properties that allow to define Gestalts as groups of pixels sharing the same motion property. By checking the presence of such Gestalts in optic flow fields we can make their interpretation more confident. We propose a context-sensitive recurrent filter capable of evidencing motion Gestalts corresponding to 1st-order elementary flow components (EFCs). A Gestalt emerges from a noisy flow as a solution of an iterative process of spatially interacting nodes that correlates the properties of the visual context with that of a structural model of the Gestalt. By proper specification of the interconnection scheme, the approach can be straightforwardly extended to model any type of multimodal spatio-temporal relationships (i.e., multimodal spatiotemporal context).
doi_str_mv 10.1007/978-3-540-45216-4_3
format Book Chapter
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_15618628</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC3087460_11_42</sourcerecordid><originalsourceid>FETCH-LOGICAL-p268t-56e20fccdce6ee755dd9e3309c5609988f592207924931cf07dbdbf608abfa423</originalsourceid><addsrcrecordid>eNotkE1PGzEQht1SKtI0v4DLXjgaxvb661iFlFYKAiF6thzvbFhYdre2g9r--johvnjG88wr6yHknMElA9BXVhsqqKyB1pIzRWsnPpAvojwcevORzJhijApR2xOyKPh-xoFzzT6RGQjg1OpafCYzWxBtrFBnZJHSM5QjuGTAZmS19jl3AavbscE-Ve0Yq-U4ZPyT6XXs3nCoHnC7633s_vncjUPVDYU9VPcYA0778is5bX2fcHG85-TX99Xj8gdd3938XH5b04krk6lUyKENoQmoELWUTWNRCLBBKrDWmFZazkFbXlvBQgu62TSbVoHxm9bXXMzJxXvu5FPwfRv9ELrkpti9-vjXMamYUdwUjr1zqYyGLUa3GceX5Bi4vVtXbDjhii53cOmK27LDj9lx_L3DlB3ulwIOOfo-PPkpY0xOgNG1KjnMlQ_9B88FdtI</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC3087460_11_42</pqid></control><display><type>book_chapter</type><title>Lattice Models for Context-Driven Regularization in Motion Perception</title><source>Springer Books</source><creator>Sabatini, Silvio P. ; Solari, Fabio ; Bisio, Giacomo M.</creator><contributor>Apolloni, Bruno ; Tagliaferri, Roberto ; Marinaro, Maria ; Tagliaferri, Roberto ; Apolloni, Bruno ; Marinaro, Maria</contributor><creatorcontrib>Sabatini, Silvio P. ; Solari, Fabio ; Bisio, Giacomo M. ; Apolloni, Bruno ; Tagliaferri, Roberto ; Marinaro, Maria ; Tagliaferri, Roberto ; Apolloni, Bruno ; Marinaro, Maria</creatorcontrib><description>Real-world motion field patterns contain intrinsic statistic properties that allow to define Gestalts as groups of pixels sharing the same motion property. By checking the presence of such Gestalts in optic flow fields we can make their interpretation more confident. We propose a context-sensitive recurrent filter capable of evidencing motion Gestalts corresponding to 1st-order elementary flow components (EFCs). A Gestalt emerges from a noisy flow as a solution of an iterative process of spatially interacting nodes that correlates the properties of the visual context with that of a structural model of the Gestalt. By proper specification of the interconnection scheme, the approach can be straightforwardly extended to model any type of multimodal spatio-temporal relationships (i.e., multimodal spatiotemporal context).</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540202271</identifier><identifier>ISBN: 3540202277</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540452168</identifier><identifier>EISBN: 9783540452164</identifier><identifier>DOI: 10.1007/978-3-540-45216-4_3</identifier><identifier>OCLC: 934978936</identifier><identifier>LCCallNum: Q334-342</identifier><language>eng</language><publisher>Germany: Springer Berlin / Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Distal Stimulus ; Exact sciences and technology ; Motion Perception ; Motion Property ; Motion Segmentation ; Pattern recognition. Digital image processing. Computational geometry ; Process Equation</subject><ispartof>Lecture notes in computer science, 2003, Vol.2859, p.35-42</ispartof><rights>Springer-Verlag Berlin Heidelberg 2003</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/3087460-l.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/978-3-540-45216-4_3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/978-3-540-45216-4_3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4035,4036,27904,38234,41421,42490</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15618628$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Apolloni, Bruno</contributor><contributor>Tagliaferri, Roberto</contributor><contributor>Marinaro, Maria</contributor><contributor>Tagliaferri, Roberto</contributor><contributor>Apolloni, Bruno</contributor><contributor>Marinaro, Maria</contributor><creatorcontrib>Sabatini, Silvio P.</creatorcontrib><creatorcontrib>Solari, Fabio</creatorcontrib><creatorcontrib>Bisio, Giacomo M.</creatorcontrib><title>Lattice Models for Context-Driven Regularization in Motion Perception</title><title>Lecture notes in computer science</title><description>Real-world motion field patterns contain intrinsic statistic properties that allow to define Gestalts as groups of pixels sharing the same motion property. By checking the presence of such Gestalts in optic flow fields we can make their interpretation more confident. We propose a context-sensitive recurrent filter capable of evidencing motion Gestalts corresponding to 1st-order elementary flow components (EFCs). A Gestalt emerges from a noisy flow as a solution of an iterative process of spatially interacting nodes that correlates the properties of the visual context with that of a structural model of the Gestalt. By proper specification of the interconnection scheme, the approach can be straightforwardly extended to model any type of multimodal spatio-temporal relationships (i.e., multimodal spatiotemporal context).</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Distal Stimulus</subject><subject>Exact sciences and technology</subject><subject>Motion Perception</subject><subject>Motion Property</subject><subject>Motion Segmentation</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Process Equation</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540202271</isbn><isbn>3540202277</isbn><isbn>3540452168</isbn><isbn>9783540452164</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2003</creationdate><recordtype>book_chapter</recordtype><recordid>eNotkE1PGzEQht1SKtI0v4DLXjgaxvb661iFlFYKAiF6thzvbFhYdre2g9r--johvnjG88wr6yHknMElA9BXVhsqqKyB1pIzRWsnPpAvojwcevORzJhijApR2xOyKPh-xoFzzT6RGQjg1OpafCYzWxBtrFBnZJHSM5QjuGTAZmS19jl3AavbscE-Ve0Yq-U4ZPyT6XXs3nCoHnC7633s_vncjUPVDYU9VPcYA0778is5bX2fcHG85-TX99Xj8gdd3938XH5b04krk6lUyKENoQmoELWUTWNRCLBBKrDWmFZazkFbXlvBQgu62TSbVoHxm9bXXMzJxXvu5FPwfRv9ELrkpti9-vjXMamYUdwUjr1zqYyGLUa3GceX5Bi4vVtXbDjhii53cOmK27LDj9lx_L3DlB3ulwIOOfo-PPkpY0xOgNG1KjnMlQ_9B88FdtI</recordid><startdate>2003</startdate><enddate>2003</enddate><creator>Sabatini, Silvio P.</creator><creator>Solari, Fabio</creator><creator>Bisio, Giacomo M.</creator><general>Springer Berlin / Heidelberg</general><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>FFUUA</scope><scope>IQODW</scope></search><sort><creationdate>2003</creationdate><title>Lattice Models for Context-Driven Regularization in Motion Perception</title><author>Sabatini, Silvio P. ; Solari, Fabio ; Bisio, Giacomo M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p268t-56e20fccdce6ee755dd9e3309c5609988f592207924931cf07dbdbf608abfa423</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Distal Stimulus</topic><topic>Exact sciences and technology</topic><topic>Motion Perception</topic><topic>Motion Property</topic><topic>Motion Segmentation</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Process Equation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sabatini, Silvio P.</creatorcontrib><creatorcontrib>Solari, Fabio</creatorcontrib><creatorcontrib>Bisio, Giacomo M.</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sabatini, Silvio P.</au><au>Solari, Fabio</au><au>Bisio, Giacomo M.</au><au>Apolloni, Bruno</au><au>Tagliaferri, Roberto</au><au>Marinaro, Maria</au><au>Tagliaferri, Roberto</au><au>Apolloni, Bruno</au><au>Marinaro, Maria</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Lattice Models for Context-Driven Regularization in Motion Perception</atitle><btitle>Lecture notes in computer science</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2003</date><risdate>2003</risdate><volume>2859</volume><spage>35</spage><epage>42</epage><pages>35-42</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540202271</isbn><isbn>3540202277</isbn><eisbn>3540452168</eisbn><eisbn>9783540452164</eisbn><abstract>Real-world motion field patterns contain intrinsic statistic properties that allow to define Gestalts as groups of pixels sharing the same motion property. By checking the presence of such Gestalts in optic flow fields we can make their interpretation more confident. We propose a context-sensitive recurrent filter capable of evidencing motion Gestalts corresponding to 1st-order elementary flow components (EFCs). A Gestalt emerges from a noisy flow as a solution of an iterative process of spatially interacting nodes that correlates the properties of the visual context with that of a structural model of the Gestalt. By proper specification of the interconnection scheme, the approach can be straightforwardly extended to model any type of multimodal spatio-temporal relationships (i.e., multimodal spatiotemporal context).</abstract><cop>Germany</cop><pub>Springer Berlin / Heidelberg</pub><doi>10.1007/978-3-540-45216-4_3</doi><oclcid>934978936</oclcid><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Lecture notes in computer science, 2003, Vol.2859, p.35-42
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_15618628
source Springer Books
subjects Applied sciences
Artificial intelligence
Computer science
control theory
systems
Distal Stimulus
Exact sciences and technology
Motion Perception
Motion Property
Motion Segmentation
Pattern recognition. Digital image processing. Computational geometry
Process Equation
title Lattice Models for Context-Driven Regularization in Motion Perception
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T10%3A14%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Lattice%20Models%20for%20Context-Driven%20Regularization%20in%20Motion%20Perception&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=Sabatini,%20Silvio%20P.&rft.date=2003&rft.volume=2859&rft.spage=35&rft.epage=42&rft.pages=35-42&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540202271&rft.isbn_list=3540202277&rft_id=info:doi/10.1007/978-3-540-45216-4_3&rft_dat=%3Cproquest_pasca%3EEBC3087460_11_42%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540452168&rft.eisbn_list=9783540452164&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC3087460_11_42&rft_id=info:pmid/&rfr_iscdi=true