Multi-category Classification by Soft-Max Combination of Binary Classifiers

In this paper, we propose a multi-category classification method that combines binary classifiers through soft-max function. Posteriori probabilities are also obtained. Both, one-versus-all and one-versus- one classifiers can be used in the combination. Empirical comparison shows that the proposed m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Duan, Kaibo, Keerthi, S. Sathiya, Chu, Wei, Shevade, Shirish Krishnaj, Poo, Aun Neow
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 134
container_issue
container_start_page 125
container_title
container_volume 2709
creator Duan, Kaibo
Keerthi, S. Sathiya
Chu, Wei
Shevade, Shirish Krishnaj
Poo, Aun Neow
description In this paper, we propose a multi-category classification method that combines binary classifiers through soft-max function. Posteriori probabilities are also obtained. Both, one-versus-all and one-versus- one classifiers can be used in the combination. Empirical comparison shows that the proposed method is competitive with other implementations of one-versus-all and one-versus-one methods in terms of both classification accuracy and posteriori probability estimate.
doi_str_mv 10.1007/3-540-44938-8_13
format Book Chapter
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_15618393</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC3072914_18_135</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-7610b398b4882d7e54352b1e3323eea71e4ab3bce6b0c736b48e499310ba4a1a3</originalsourceid><addsrcrecordid>eNpNkM1TwyAQxXH8GGvt3WMuHqnAQgJHzdSPsR0P6pkBJDWahhrSGfvfS9oe5AL7eL-d3YfQFSVTSkhxA1hwgjlXILHUFI7QBSRlJ8jjQ0EgV_IEjQgQhlXB4QyNlJCCAaP0HE1i_CLpABPJOULPi03T19iZ3i9Dt83KxsRYV3US6tBmdpu9hqrHC_OblWFl63avhyq7S-9_gO_iJTqtTBP95HCP0fv97K18xPOXh6fydo4dSNrjIqfEgpKWS8k-Ci84CGapB2DgvSmo58aCdT63xBWQJ5_nSkGiDDfUwBhd7_uuTXSmqTrTujrqdVev0kSaipxKUJB8070vpq926TttQ_iOmhI95KlBp8D0Lj495JkAODTuws_Gx177gXC-7TvTuE-z7tOaGkjBFOWaDpCAP3U_dKw</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC3072914_18_135</pqid></control><display><type>book_chapter</type><title>Multi-category Classification by Soft-Max Combination of Binary Classifiers</title><source>Springer Books</source><creator>Duan, Kaibo ; Keerthi, S. Sathiya ; Chu, Wei ; Shevade, Shirish Krishnaj ; Poo, Aun Neow</creator><contributor>Windeatt, Terry ; Roli, Fabio ; Roli, Fabio ; Windeatt, Terry</contributor><creatorcontrib>Duan, Kaibo ; Keerthi, S. Sathiya ; Chu, Wei ; Shevade, Shirish Krishnaj ; Poo, Aun Neow ; Windeatt, Terry ; Roli, Fabio ; Roli, Fabio ; Windeatt, Terry</creatorcontrib><description>In this paper, we propose a multi-category classification method that combines binary classifiers through soft-max function. Posteriori probabilities are also obtained. Both, one-versus-all and one-versus- one classifiers can be used in the combination. Empirical comparison shows that the proposed method is competitive with other implementations of one-versus-all and one-versus-one methods in terms of both classification accuracy and posteriori probability estimate.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540403698</identifier><identifier>ISBN: 9783540403692</identifier><identifier>EISBN: 3540449388</identifier><identifier>EISBN: 9783540449386</identifier><identifier>DOI: 10.1007/3-540-44938-8_13</identifier><identifier>OCLC: 958523211</identifier><identifier>LCCallNum: HD9696.2-9696.82</identifier><language>eng</language><publisher>Germany: Springer Berlin / Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Exact sciences and technology ; Learning and adaptive systems ; Negative Label ; Positive Label ; Posteriori Probability ; Support Vector Machine ; Test Error Rate</subject><ispartof>Lecture notes in computer science, 2003, Vol.2709, p.125-134</ispartof><rights>Springer-Verlag Berlin Heidelberg 2003</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-7610b398b4882d7e54352b1e3323eea71e4ab3bce6b0c736b48e499310ba4a1a3</citedby><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/3072914-l.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/3-540-44938-8_13$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/3-540-44938-8_13$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,776,777,781,786,787,790,4036,4037,27906,38236,41423,42492</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15618393$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Windeatt, Terry</contributor><contributor>Roli, Fabio</contributor><contributor>Roli, Fabio</contributor><contributor>Windeatt, Terry</contributor><creatorcontrib>Duan, Kaibo</creatorcontrib><creatorcontrib>Keerthi, S. Sathiya</creatorcontrib><creatorcontrib>Chu, Wei</creatorcontrib><creatorcontrib>Shevade, Shirish Krishnaj</creatorcontrib><creatorcontrib>Poo, Aun Neow</creatorcontrib><title>Multi-category Classification by Soft-Max Combination of Binary Classifiers</title><title>Lecture notes in computer science</title><description>In this paper, we propose a multi-category classification method that combines binary classifiers through soft-max function. Posteriori probabilities are also obtained. Both, one-versus-all and one-versus- one classifiers can be used in the combination. Empirical comparison shows that the proposed method is competitive with other implementations of one-versus-all and one-versus-one methods in terms of both classification accuracy and posteriori probability estimate.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Learning and adaptive systems</subject><subject>Negative Label</subject><subject>Positive Label</subject><subject>Posteriori Probability</subject><subject>Support Vector Machine</subject><subject>Test Error Rate</subject><issn>0302-9743</issn><isbn>3540403698</isbn><isbn>9783540403692</isbn><isbn>3540449388</isbn><isbn>9783540449386</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2003</creationdate><recordtype>book_chapter</recordtype><recordid>eNpNkM1TwyAQxXH8GGvt3WMuHqnAQgJHzdSPsR0P6pkBJDWahhrSGfvfS9oe5AL7eL-d3YfQFSVTSkhxA1hwgjlXILHUFI7QBSRlJ8jjQ0EgV_IEjQgQhlXB4QyNlJCCAaP0HE1i_CLpABPJOULPi03T19iZ3i9Dt83KxsRYV3US6tBmdpu9hqrHC_OblWFl63avhyq7S-9_gO_iJTqtTBP95HCP0fv97K18xPOXh6fydo4dSNrjIqfEgpKWS8k-Ci84CGapB2DgvSmo58aCdT63xBWQJ5_nSkGiDDfUwBhd7_uuTXSmqTrTujrqdVev0kSaipxKUJB8070vpq926TttQ_iOmhI95KlBp8D0Lj495JkAODTuws_Gx177gXC-7TvTuE-z7tOaGkjBFOWaDpCAP3U_dKw</recordid><startdate>2003</startdate><enddate>2003</enddate><creator>Duan, Kaibo</creator><creator>Keerthi, S. Sathiya</creator><creator>Chu, Wei</creator><creator>Shevade, Shirish Krishnaj</creator><creator>Poo, Aun Neow</creator><general>Springer Berlin / Heidelberg</general><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>FFUUA</scope><scope>IQODW</scope></search><sort><creationdate>2003</creationdate><title>Multi-category Classification by Soft-Max Combination of Binary Classifiers</title><author>Duan, Kaibo ; Keerthi, S. Sathiya ; Chu, Wei ; Shevade, Shirish Krishnaj ; Poo, Aun Neow</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-7610b398b4882d7e54352b1e3323eea71e4ab3bce6b0c736b48e499310ba4a1a3</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Learning and adaptive systems</topic><topic>Negative Label</topic><topic>Positive Label</topic><topic>Posteriori Probability</topic><topic>Support Vector Machine</topic><topic>Test Error Rate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duan, Kaibo</creatorcontrib><creatorcontrib>Keerthi, S. Sathiya</creatorcontrib><creatorcontrib>Chu, Wei</creatorcontrib><creatorcontrib>Shevade, Shirish Krishnaj</creatorcontrib><creatorcontrib>Poo, Aun Neow</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duan, Kaibo</au><au>Keerthi, S. Sathiya</au><au>Chu, Wei</au><au>Shevade, Shirish Krishnaj</au><au>Poo, Aun Neow</au><au>Windeatt, Terry</au><au>Roli, Fabio</au><au>Roli, Fabio</au><au>Windeatt, Terry</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Multi-category Classification by Soft-Max Combination of Binary Classifiers</atitle><btitle>Lecture notes in computer science</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2003</date><risdate>2003</risdate><volume>2709</volume><spage>125</spage><epage>134</epage><pages>125-134</pages><issn>0302-9743</issn><isbn>3540403698</isbn><isbn>9783540403692</isbn><eisbn>3540449388</eisbn><eisbn>9783540449386</eisbn><abstract>In this paper, we propose a multi-category classification method that combines binary classifiers through soft-max function. Posteriori probabilities are also obtained. Both, one-versus-all and one-versus- one classifiers can be used in the combination. Empirical comparison shows that the proposed method is competitive with other implementations of one-versus-all and one-versus-one methods in terms of both classification accuracy and posteriori probability estimate.</abstract><cop>Germany</cop><pub>Springer Berlin / Heidelberg</pub><doi>10.1007/3-540-44938-8_13</doi><oclcid>958523211</oclcid><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Lecture notes in computer science, 2003, Vol.2709, p.125-134
issn 0302-9743
language eng
recordid cdi_pascalfrancis_primary_15618393
source Springer Books
subjects Applied sciences
Artificial intelligence
Computer science
control theory
systems
Exact sciences and technology
Learning and adaptive systems
Negative Label
Positive Label
Posteriori Probability
Support Vector Machine
Test Error Rate
title Multi-category Classification by Soft-Max Combination of Binary Classifiers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T16%3A46%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Multi-category%20Classification%20by%20Soft-Max%20Combination%20of%20Binary%20Classifiers&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=Duan,%20Kaibo&rft.date=2003&rft.volume=2709&rft.spage=125&rft.epage=134&rft.pages=125-134&rft.issn=0302-9743&rft.isbn=3540403698&rft.isbn_list=9783540403692&rft_id=info:doi/10.1007/3-540-44938-8_13&rft_dat=%3Cproquest_pasca%3EEBC3072914_18_135%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540449388&rft.eisbn_list=9783540449386&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC3072914_18_135&rft_id=info:pmid/&rfr_iscdi=true