Multi-category Classification by Soft-Max Combination of Binary Classifiers
In this paper, we propose a multi-category classification method that combines binary classifiers through soft-max function. Posteriori probabilities are also obtained. Both, one-versus-all and one-versus- one classifiers can be used in the combination. Empirical comparison shows that the proposed m...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 134 |
---|---|
container_issue | |
container_start_page | 125 |
container_title | |
container_volume | 2709 |
creator | Duan, Kaibo Keerthi, S. Sathiya Chu, Wei Shevade, Shirish Krishnaj Poo, Aun Neow |
description | In this paper, we propose a multi-category classification method that combines binary classifiers through soft-max function. Posteriori probabilities are also obtained. Both, one-versus-all and one-versus- one classifiers can be used in the combination. Empirical comparison shows that the proposed method is competitive with other implementations of one-versus-all and one-versus-one methods in terms of both classification accuracy and posteriori probability estimate. |
doi_str_mv | 10.1007/3-540-44938-8_13 |
format | Book Chapter |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_15618393</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC3072914_18_135</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-7610b398b4882d7e54352b1e3323eea71e4ab3bce6b0c736b48e499310ba4a1a3</originalsourceid><addsrcrecordid>eNpNkM1TwyAQxXH8GGvt3WMuHqnAQgJHzdSPsR0P6pkBJDWahhrSGfvfS9oe5AL7eL-d3YfQFSVTSkhxA1hwgjlXILHUFI7QBSRlJ8jjQ0EgV_IEjQgQhlXB4QyNlJCCAaP0HE1i_CLpABPJOULPi03T19iZ3i9Dt83KxsRYV3US6tBmdpu9hqrHC_OblWFl63avhyq7S-9_gO_iJTqtTBP95HCP0fv97K18xPOXh6fydo4dSNrjIqfEgpKWS8k-Ci84CGapB2DgvSmo58aCdT63xBWQJ5_nSkGiDDfUwBhd7_uuTXSmqTrTujrqdVev0kSaipxKUJB8070vpq926TttQ_iOmhI95KlBp8D0Lj495JkAODTuws_Gx177gXC-7TvTuE-z7tOaGkjBFOWaDpCAP3U_dKw</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC3072914_18_135</pqid></control><display><type>book_chapter</type><title>Multi-category Classification by Soft-Max Combination of Binary Classifiers</title><source>Springer Books</source><creator>Duan, Kaibo ; Keerthi, S. Sathiya ; Chu, Wei ; Shevade, Shirish Krishnaj ; Poo, Aun Neow</creator><contributor>Windeatt, Terry ; Roli, Fabio ; Roli, Fabio ; Windeatt, Terry</contributor><creatorcontrib>Duan, Kaibo ; Keerthi, S. Sathiya ; Chu, Wei ; Shevade, Shirish Krishnaj ; Poo, Aun Neow ; Windeatt, Terry ; Roli, Fabio ; Roli, Fabio ; Windeatt, Terry</creatorcontrib><description>In this paper, we propose a multi-category classification method that combines binary classifiers through soft-max function. Posteriori probabilities are also obtained. Both, one-versus-all and one-versus- one classifiers can be used in the combination. Empirical comparison shows that the proposed method is competitive with other implementations of one-versus-all and one-versus-one methods in terms of both classification accuracy and posteriori probability estimate.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540403698</identifier><identifier>ISBN: 9783540403692</identifier><identifier>EISBN: 3540449388</identifier><identifier>EISBN: 9783540449386</identifier><identifier>DOI: 10.1007/3-540-44938-8_13</identifier><identifier>OCLC: 958523211</identifier><identifier>LCCallNum: HD9696.2-9696.82</identifier><language>eng</language><publisher>Germany: Springer Berlin / Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Exact sciences and technology ; Learning and adaptive systems ; Negative Label ; Positive Label ; Posteriori Probability ; Support Vector Machine ; Test Error Rate</subject><ispartof>Lecture notes in computer science, 2003, Vol.2709, p.125-134</ispartof><rights>Springer-Verlag Berlin Heidelberg 2003</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-7610b398b4882d7e54352b1e3323eea71e4ab3bce6b0c736b48e499310ba4a1a3</citedby><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/3072914-l.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/3-540-44938-8_13$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/3-540-44938-8_13$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,776,777,781,786,787,790,4036,4037,27906,38236,41423,42492</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15618393$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Windeatt, Terry</contributor><contributor>Roli, Fabio</contributor><contributor>Roli, Fabio</contributor><contributor>Windeatt, Terry</contributor><creatorcontrib>Duan, Kaibo</creatorcontrib><creatorcontrib>Keerthi, S. Sathiya</creatorcontrib><creatorcontrib>Chu, Wei</creatorcontrib><creatorcontrib>Shevade, Shirish Krishnaj</creatorcontrib><creatorcontrib>Poo, Aun Neow</creatorcontrib><title>Multi-category Classification by Soft-Max Combination of Binary Classifiers</title><title>Lecture notes in computer science</title><description>In this paper, we propose a multi-category classification method that combines binary classifiers through soft-max function. Posteriori probabilities are also obtained. Both, one-versus-all and one-versus- one classifiers can be used in the combination. Empirical comparison shows that the proposed method is competitive with other implementations of one-versus-all and one-versus-one methods in terms of both classification accuracy and posteriori probability estimate.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Learning and adaptive systems</subject><subject>Negative Label</subject><subject>Positive Label</subject><subject>Posteriori Probability</subject><subject>Support Vector Machine</subject><subject>Test Error Rate</subject><issn>0302-9743</issn><isbn>3540403698</isbn><isbn>9783540403692</isbn><isbn>3540449388</isbn><isbn>9783540449386</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2003</creationdate><recordtype>book_chapter</recordtype><recordid>eNpNkM1TwyAQxXH8GGvt3WMuHqnAQgJHzdSPsR0P6pkBJDWahhrSGfvfS9oe5AL7eL-d3YfQFSVTSkhxA1hwgjlXILHUFI7QBSRlJ8jjQ0EgV_IEjQgQhlXB4QyNlJCCAaP0HE1i_CLpABPJOULPi03T19iZ3i9Dt83KxsRYV3US6tBmdpu9hqrHC_OblWFl63avhyq7S-9_gO_iJTqtTBP95HCP0fv97K18xPOXh6fydo4dSNrjIqfEgpKWS8k-Ci84CGapB2DgvSmo58aCdT63xBWQJ5_nSkGiDDfUwBhd7_uuTXSmqTrTujrqdVev0kSaipxKUJB8070vpq926TttQ_iOmhI95KlBp8D0Lj495JkAODTuws_Gx177gXC-7TvTuE-z7tOaGkjBFOWaDpCAP3U_dKw</recordid><startdate>2003</startdate><enddate>2003</enddate><creator>Duan, Kaibo</creator><creator>Keerthi, S. Sathiya</creator><creator>Chu, Wei</creator><creator>Shevade, Shirish Krishnaj</creator><creator>Poo, Aun Neow</creator><general>Springer Berlin / Heidelberg</general><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>FFUUA</scope><scope>IQODW</scope></search><sort><creationdate>2003</creationdate><title>Multi-category Classification by Soft-Max Combination of Binary Classifiers</title><author>Duan, Kaibo ; Keerthi, S. Sathiya ; Chu, Wei ; Shevade, Shirish Krishnaj ; Poo, Aun Neow</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-7610b398b4882d7e54352b1e3323eea71e4ab3bce6b0c736b48e499310ba4a1a3</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Learning and adaptive systems</topic><topic>Negative Label</topic><topic>Positive Label</topic><topic>Posteriori Probability</topic><topic>Support Vector Machine</topic><topic>Test Error Rate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duan, Kaibo</creatorcontrib><creatorcontrib>Keerthi, S. Sathiya</creatorcontrib><creatorcontrib>Chu, Wei</creatorcontrib><creatorcontrib>Shevade, Shirish Krishnaj</creatorcontrib><creatorcontrib>Poo, Aun Neow</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duan, Kaibo</au><au>Keerthi, S. Sathiya</au><au>Chu, Wei</au><au>Shevade, Shirish Krishnaj</au><au>Poo, Aun Neow</au><au>Windeatt, Terry</au><au>Roli, Fabio</au><au>Roli, Fabio</au><au>Windeatt, Terry</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Multi-category Classification by Soft-Max Combination of Binary Classifiers</atitle><btitle>Lecture notes in computer science</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2003</date><risdate>2003</risdate><volume>2709</volume><spage>125</spage><epage>134</epage><pages>125-134</pages><issn>0302-9743</issn><isbn>3540403698</isbn><isbn>9783540403692</isbn><eisbn>3540449388</eisbn><eisbn>9783540449386</eisbn><abstract>In this paper, we propose a multi-category classification method that combines binary classifiers through soft-max function. Posteriori probabilities are also obtained. Both, one-versus-all and one-versus- one classifiers can be used in the combination. Empirical comparison shows that the proposed method is competitive with other implementations of one-versus-all and one-versus-one methods in terms of both classification accuracy and posteriori probability estimate.</abstract><cop>Germany</cop><pub>Springer Berlin / Heidelberg</pub><doi>10.1007/3-540-44938-8_13</doi><oclcid>958523211</oclcid><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Lecture notes in computer science, 2003, Vol.2709, p.125-134 |
issn | 0302-9743 |
language | eng |
recordid | cdi_pascalfrancis_primary_15618393 |
source | Springer Books |
subjects | Applied sciences Artificial intelligence Computer science control theory systems Exact sciences and technology Learning and adaptive systems Negative Label Positive Label Posteriori Probability Support Vector Machine Test Error Rate |
title | Multi-category Classification by Soft-Max Combination of Binary Classifiers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T16%3A46%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Multi-category%20Classification%20by%20Soft-Max%20Combination%20of%20Binary%20Classifiers&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=Duan,%20Kaibo&rft.date=2003&rft.volume=2709&rft.spage=125&rft.epage=134&rft.pages=125-134&rft.issn=0302-9743&rft.isbn=3540403698&rft.isbn_list=9783540403692&rft_id=info:doi/10.1007/3-540-44938-8_13&rft_dat=%3Cproquest_pasca%3EEBC3072914_18_135%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540449388&rft.eisbn_list=9783540449386&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC3072914_18_135&rft_id=info:pmid/&rfr_iscdi=true |