Symbolic Distance Measurements Based on Characteristic Subspaces

We introduce the subspace difference metric, a novel heterogeneous distance metric for calculating distances between points with both continuous and (unordered) categorical attributes. Our approach is based on the computation and comparison of characteristic subspaces (i.e. contexts) for each of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Ludl, Marcus-Christopher
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 326
container_issue
container_start_page 315
container_title
container_volume
creator Ludl, Marcus-Christopher
description We introduce the subspace difference metric, a novel heterogeneous distance metric for calculating distances between points with both continuous and (unordered) categorical attributes. Our approach is based on the computation and comparison of characteristic subspaces (i.e. contexts) for each of the symbols and can be viewed as a generalization of the well-known value difference metric. Subsequently, as one possible extension, we propose a linearization of the computed symbolic distances by multidimensional scaling, thereby mapping a set of symbols onto the interval [0, 1]. Thus, even algorithms, which have originally been designed for usage with continuous attributes (e.g. clustering algorithms like k-means), may be applied to datasets containing discrete attributes, without having to adapt the algorithm itself. Finally, we evaluate the proposed metric and the linearization in quantitative and qualitative settings and exemplify the applicability in clustering domains.
doi_str_mv 10.1007/978-3-540-39804-2_29
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_15618189</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>15618189</sourcerecordid><originalsourceid>FETCH-LOGICAL-p226t-2bfc7bc28c4149e15da15745db312bab1c1364425d777f6137878c545b7003883</originalsourceid><addsrcrecordid>eNotkMtOwzAQRc1LopT-AYtsWBo8fsT2DghPqYhFQWJn2Y4DgTaJ7HTRv8dtmc1I9x6NRgehCyBXQIi81lJhhgUnmGlFOKaG6gN0xnKyCz4P0QRKAMwY10dolvltRwlRQh6jCWGEYi05O0WzlH5IHkY5LWGCbhableuXrS_u2zTazofiNdi0jmEVujEVdzaFuui7ovq20foxxIxlerF2abA-pHN00thlCrP_PUUfjw_v1TOevz29VLdzPFBajpi6xkvnqfIcuA4gagtCclE7BtRZBx5YyTkVtZSyKYFJJZUXXDiZn1WKTdHl_u5gk7fLJuZf22SG2K5s3BgQJShQOnN0z6VcdV8hGtf3v8kAMVuXJrsxzGQ7ZqfObF2yP00HYOk</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Symbolic Distance Measurements Based on Characteristic Subspaces</title><source>Springer Books</source><creator>Ludl, Marcus-Christopher</creator><contributor>Lavrač, Nada ; Blockeel, Hendrik ; Todorovski, Ljupčo ; Gamberger, Dragan</contributor><creatorcontrib>Ludl, Marcus-Christopher ; Lavrač, Nada ; Blockeel, Hendrik ; Todorovski, Ljupčo ; Gamberger, Dragan</creatorcontrib><description>We introduce the subspace difference metric, a novel heterogeneous distance metric for calculating distances between points with both continuous and (unordered) categorical attributes. Our approach is based on the computation and comparison of characteristic subspaces (i.e. contexts) for each of the symbols and can be viewed as a generalization of the well-known value difference metric. Subsequently, as one possible extension, we propose a linearization of the computed symbolic distances by multidimensional scaling, thereby mapping a set of symbols onto the interval [0, 1]. Thus, even algorithms, which have originally been designed for usage with continuous attributes (e.g. clustering algorithms like k-means), may be applied to datasets containing discrete attributes, without having to adapt the algorithm itself. Finally, we evaluate the proposed metric and the linearization in quantitative and qualitative settings and exemplify the applicability in clustering domains.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540200857</identifier><identifier>ISBN: 3540200851</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 354039804X</identifier><identifier>EISBN: 9783540398042</identifier><identifier>DOI: 10.1007/978-3-540-39804-2_29</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Association Rule ; Categorical Attribute ; Computer science; control theory; systems ; Dissimilarity Matrix ; Exact sciences and technology ; Learning and adaptive systems ; Multidimensional Scaling ; Symbolic Attribute</subject><ispartof>Knowledge Discovery in Databases: PKDD 2003, 2003, p.315-326</ispartof><rights>Springer-Verlag Berlin Heidelberg 2003</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/978-3-540-39804-2_29$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/978-3-540-39804-2_29$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4036,4037,27902,38232,41418,42487</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15618189$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Lavrač, Nada</contributor><contributor>Blockeel, Hendrik</contributor><contributor>Todorovski, Ljupčo</contributor><contributor>Gamberger, Dragan</contributor><creatorcontrib>Ludl, Marcus-Christopher</creatorcontrib><title>Symbolic Distance Measurements Based on Characteristic Subspaces</title><title>Knowledge Discovery in Databases: PKDD 2003</title><description>We introduce the subspace difference metric, a novel heterogeneous distance metric for calculating distances between points with both continuous and (unordered) categorical attributes. Our approach is based on the computation and comparison of characteristic subspaces (i.e. contexts) for each of the symbols and can be viewed as a generalization of the well-known value difference metric. Subsequently, as one possible extension, we propose a linearization of the computed symbolic distances by multidimensional scaling, thereby mapping a set of symbols onto the interval [0, 1]. Thus, even algorithms, which have originally been designed for usage with continuous attributes (e.g. clustering algorithms like k-means), may be applied to datasets containing discrete attributes, without having to adapt the algorithm itself. Finally, we evaluate the proposed metric and the linearization in quantitative and qualitative settings and exemplify the applicability in clustering domains.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Association Rule</subject><subject>Categorical Attribute</subject><subject>Computer science; control theory; systems</subject><subject>Dissimilarity Matrix</subject><subject>Exact sciences and technology</subject><subject>Learning and adaptive systems</subject><subject>Multidimensional Scaling</subject><subject>Symbolic Attribute</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540200857</isbn><isbn>3540200851</isbn><isbn>354039804X</isbn><isbn>9783540398042</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2003</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkMtOwzAQRc1LopT-AYtsWBo8fsT2DghPqYhFQWJn2Y4DgTaJ7HTRv8dtmc1I9x6NRgehCyBXQIi81lJhhgUnmGlFOKaG6gN0xnKyCz4P0QRKAMwY10dolvltRwlRQh6jCWGEYi05O0WzlH5IHkY5LWGCbhableuXrS_u2zTazofiNdi0jmEVujEVdzaFuui7ovq20foxxIxlerF2abA-pHN00thlCrP_PUUfjw_v1TOevz29VLdzPFBajpi6xkvnqfIcuA4gagtCclE7BtRZBx5YyTkVtZSyKYFJJZUXXDiZn1WKTdHl_u5gk7fLJuZf22SG2K5s3BgQJShQOnN0z6VcdV8hGtf3v8kAMVuXJrsxzGQ7ZqfObF2yP00HYOk</recordid><startdate>2003</startdate><enddate>2003</enddate><creator>Ludl, Marcus-Christopher</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2003</creationdate><title>Symbolic Distance Measurements Based on Characteristic Subspaces</title><author>Ludl, Marcus-Christopher</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p226t-2bfc7bc28c4149e15da15745db312bab1c1364425d777f6137878c545b7003883</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Association Rule</topic><topic>Categorical Attribute</topic><topic>Computer science; control theory; systems</topic><topic>Dissimilarity Matrix</topic><topic>Exact sciences and technology</topic><topic>Learning and adaptive systems</topic><topic>Multidimensional Scaling</topic><topic>Symbolic Attribute</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ludl, Marcus-Christopher</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ludl, Marcus-Christopher</au><au>Lavrač, Nada</au><au>Blockeel, Hendrik</au><au>Todorovski, Ljupčo</au><au>Gamberger, Dragan</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Symbolic Distance Measurements Based on Characteristic Subspaces</atitle><btitle>Knowledge Discovery in Databases: PKDD 2003</btitle><date>2003</date><risdate>2003</risdate><spage>315</spage><epage>326</epage><pages>315-326</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540200857</isbn><isbn>3540200851</isbn><eisbn>354039804X</eisbn><eisbn>9783540398042</eisbn><abstract>We introduce the subspace difference metric, a novel heterogeneous distance metric for calculating distances between points with both continuous and (unordered) categorical attributes. Our approach is based on the computation and comparison of characteristic subspaces (i.e. contexts) for each of the symbols and can be viewed as a generalization of the well-known value difference metric. Subsequently, as one possible extension, we propose a linearization of the computed symbolic distances by multidimensional scaling, thereby mapping a set of symbols onto the interval [0, 1]. Thus, even algorithms, which have originally been designed for usage with continuous attributes (e.g. clustering algorithms like k-means), may be applied to datasets containing discrete attributes, without having to adapt the algorithm itself. Finally, we evaluate the proposed metric and the linearization in quantitative and qualitative settings and exemplify the applicability in clustering domains.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/978-3-540-39804-2_29</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Knowledge Discovery in Databases: PKDD 2003, 2003, p.315-326
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_15618189
source Springer Books
subjects Applied sciences
Artificial intelligence
Association Rule
Categorical Attribute
Computer science
control theory
systems
Dissimilarity Matrix
Exact sciences and technology
Learning and adaptive systems
Multidimensional Scaling
Symbolic Attribute
title Symbolic Distance Measurements Based on Characteristic Subspaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T09%3A12%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Symbolic%20Distance%20Measurements%20Based%20on%20Characteristic%20Subspaces&rft.btitle=Knowledge%20Discovery%20in%20Databases:%20PKDD%202003&rft.au=Ludl,%20Marcus-Christopher&rft.date=2003&rft.spage=315&rft.epage=326&rft.pages=315-326&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540200857&rft.isbn_list=3540200851&rft_id=info:doi/10.1007/978-3-540-39804-2_29&rft_dat=%3Cpascalfrancis_sprin%3E15618189%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=354039804X&rft.eisbn_list=9783540398042&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true