A Multi-layered Bayesian Network Model for Structured Document Retrieval

New standards in document representation, like for example SGML, XML, and MPEG-7, compel Information Retrieval to design and implement models and tools to index, retrieve and present documents according to the given document structure. The paper presents the design of an Information Retrieval system...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Crestani, Fabio, de Campos, Luis M., Fernández-Luna, Juan M., Huete, Juan F.
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 86
container_issue
container_start_page 74
container_title
container_volume
creator Crestani, Fabio
de Campos, Luis M.
Fernández-Luna, Juan M.
Huete, Juan F.
description New standards in document representation, like for example SGML, XML, and MPEG-7, compel Information Retrieval to design and implement models and tools to index, retrieve and present documents according to the given document structure. The paper presents the design of an Information Retrieval system for multimedia structured documents, like for example journal articles, e-books, and MPEG-7 videos. The system is based on Bayesian Networks, since this class of mathematical models enable to represent and quantify the relations between the structural components of the document. Some preliminary results on the system implementation are also presented.
doi_str_mv 10.1007/978-3-540-45062-7_6
format Book Chapter
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_15567925</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>15567925</sourcerecordid><originalsourceid>FETCH-LOGICAL-p270t-5989fb423d76e19a48f5c6bfb82db922f56fe9f061b1f37e7a4daa0dab9a6f393</originalsourceid><addsrcrecordid>eNpFkMlOwzAURc0kUUq_gE02LA3Pc7wsY5FakBjWlpPYKDRNKjsB9e9xWyRWV7r36EnvIHRB4IoAqGutcsyw4IC5AEmxMvIATVLLUrer1CEaEUkIZozro_8NuObkGI2AAcVacXaKzmL8AgCqNB2h2TRbDE1f48ZuXHBVdpMy1rbNnl3_04Vltugq12S-C9lbH4ayH7bUXVcOK9f22avrQ-2-bXOOTrxtopv85Rh9PNy_387w_OXx6XY6x2uqoMdC59oXnLJKSUe05bkXpSx8kdOq0JR6Ib3THiQpiGfKKcsra6GyhbbSM83G6HJ_d21jaRsfbFvW0axDvbJhY4gQMj0mEkf2XExT--mCKbpuGQ0Bs1VqkiDDTFJkdv5MUsp-AYu-ZNs</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype></control><display><type>book_chapter</type><title>A Multi-layered Bayesian Network Model for Structured Document Retrieval</title><source>Springer Books</source><creator>Crestani, Fabio ; de Campos, Luis M. ; Fernández-Luna, Juan M. ; Huete, Juan F.</creator><contributor>Zhang, Nevin Lianwen ; Nielsen, Thomas Dyhre</contributor><creatorcontrib>Crestani, Fabio ; de Campos, Luis M. ; Fernández-Luna, Juan M. ; Huete, Juan F. ; Zhang, Nevin Lianwen ; Nielsen, Thomas Dyhre</creatorcontrib><description>New standards in document representation, like for example SGML, XML, and MPEG-7, compel Information Retrieval to design and implement models and tools to index, retrieve and present documents according to the given document structure. The paper presents the design of an Information Retrieval system for multimedia structured documents, like for example journal articles, e-books, and MPEG-7 videos. The system is based on Bayesian Networks, since this class of mathematical models enable to represent and quantify the relations between the structural components of the document. Some preliminary results on the system implementation are also presented.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540404941</identifier><identifier>ISBN: 3540404945</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540450627</identifier><identifier>EISBN: 3540450629</identifier><identifier>DOI: 10.1007/978-3-540-45062-7_6</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Bayesian Network ; Computer science; control theory; systems ; Exact sciences and technology ; Information Retrieval ; Information Retrieval System ; Information systems. Data bases ; Learning and adaptive systems ; Memory organisation. Data processing ; Retrieval Model ; Software ; Structural Unit</subject><ispartof>Lecture notes in computer science, 2003, p.74-86</ispartof><rights>Springer-Verlag Berlin Heidelberg 2003</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/978-3-540-45062-7_6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/978-3-540-45062-7_6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4048,4049,27923,38253,41440,42509</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15567925$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Zhang, Nevin Lianwen</contributor><contributor>Nielsen, Thomas Dyhre</contributor><creatorcontrib>Crestani, Fabio</creatorcontrib><creatorcontrib>de Campos, Luis M.</creatorcontrib><creatorcontrib>Fernández-Luna, Juan M.</creatorcontrib><creatorcontrib>Huete, Juan F.</creatorcontrib><title>A Multi-layered Bayesian Network Model for Structured Document Retrieval</title><title>Lecture notes in computer science</title><description>New standards in document representation, like for example SGML, XML, and MPEG-7, compel Information Retrieval to design and implement models and tools to index, retrieve and present documents according to the given document structure. The paper presents the design of an Information Retrieval system for multimedia structured documents, like for example journal articles, e-books, and MPEG-7 videos. The system is based on Bayesian Networks, since this class of mathematical models enable to represent and quantify the relations between the structural components of the document. Some preliminary results on the system implementation are also presented.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Bayesian Network</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Information Retrieval</subject><subject>Information Retrieval System</subject><subject>Information systems. Data bases</subject><subject>Learning and adaptive systems</subject><subject>Memory organisation. Data processing</subject><subject>Retrieval Model</subject><subject>Software</subject><subject>Structural Unit</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540404941</isbn><isbn>3540404945</isbn><isbn>9783540450627</isbn><isbn>3540450629</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2003</creationdate><recordtype>book_chapter</recordtype><recordid>eNpFkMlOwzAURc0kUUq_gE02LA3Pc7wsY5FakBjWlpPYKDRNKjsB9e9xWyRWV7r36EnvIHRB4IoAqGutcsyw4IC5AEmxMvIATVLLUrer1CEaEUkIZozro_8NuObkGI2AAcVacXaKzmL8AgCqNB2h2TRbDE1f48ZuXHBVdpMy1rbNnl3_04Vltugq12S-C9lbH4ayH7bUXVcOK9f22avrQ-2-bXOOTrxtopv85Rh9PNy_387w_OXx6XY6x2uqoMdC59oXnLJKSUe05bkXpSx8kdOq0JR6Ib3THiQpiGfKKcsra6GyhbbSM83G6HJ_d21jaRsfbFvW0axDvbJhY4gQMj0mEkf2XExT--mCKbpuGQ0Bs1VqkiDDTFJkdv5MUsp-AYu-ZNs</recordid><startdate>2003</startdate><enddate>2003</enddate><creator>Crestani, Fabio</creator><creator>de Campos, Luis M.</creator><creator>Fernández-Luna, Juan M.</creator><creator>Huete, Juan F.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2003</creationdate><title>A Multi-layered Bayesian Network Model for Structured Document Retrieval</title><author>Crestani, Fabio ; de Campos, Luis M. ; Fernández-Luna, Juan M. ; Huete, Juan F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p270t-5989fb423d76e19a48f5c6bfb82db922f56fe9f061b1f37e7a4daa0dab9a6f393</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Bayesian Network</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Information Retrieval</topic><topic>Information Retrieval System</topic><topic>Information systems. Data bases</topic><topic>Learning and adaptive systems</topic><topic>Memory organisation. Data processing</topic><topic>Retrieval Model</topic><topic>Software</topic><topic>Structural Unit</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Crestani, Fabio</creatorcontrib><creatorcontrib>de Campos, Luis M.</creatorcontrib><creatorcontrib>Fernández-Luna, Juan M.</creatorcontrib><creatorcontrib>Huete, Juan F.</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Crestani, Fabio</au><au>de Campos, Luis M.</au><au>Fernández-Luna, Juan M.</au><au>Huete, Juan F.</au><au>Zhang, Nevin Lianwen</au><au>Nielsen, Thomas Dyhre</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>A Multi-layered Bayesian Network Model for Structured Document Retrieval</atitle><btitle>Lecture notes in computer science</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2003</date><risdate>2003</risdate><spage>74</spage><epage>86</epage><pages>74-86</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540404941</isbn><isbn>3540404945</isbn><eisbn>9783540450627</eisbn><eisbn>3540450629</eisbn><abstract>New standards in document representation, like for example SGML, XML, and MPEG-7, compel Information Retrieval to design and implement models and tools to index, retrieve and present documents according to the given document structure. The paper presents the design of an Information Retrieval system for multimedia structured documents, like for example journal articles, e-books, and MPEG-7 videos. The system is based on Bayesian Networks, since this class of mathematical models enable to represent and quantify the relations between the structural components of the document. Some preliminary results on the system implementation are also presented.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/978-3-540-45062-7_6</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Lecture notes in computer science, 2003, p.74-86
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_15567925
source Springer Books
subjects Applied sciences
Artificial intelligence
Bayesian Network
Computer science
control theory
systems
Exact sciences and technology
Information Retrieval
Information Retrieval System
Information systems. Data bases
Learning and adaptive systems
Memory organisation. Data processing
Retrieval Model
Software
Structural Unit
title A Multi-layered Bayesian Network Model for Structured Document Retrieval
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T07%3A17%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=A%20Multi-layered%20Bayesian%20Network%20Model%20for%20Structured%20Document%20Retrieval&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=Crestani,%20Fabio&rft.date=2003&rft.spage=74&rft.epage=86&rft.pages=74-86&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540404941&rft.isbn_list=3540404945&rft_id=info:doi/10.1007/978-3-540-45062-7_6&rft_dat=%3Cpascalfrancis_sprin%3E15567925%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540450627&rft.eisbn_list=3540450629&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true