Genetic Approach to Constructive Induction Based on Non-algebraic Feature Representation

The aim of constructive induction (CI) is to transform the original data representation of hard concepts with complex interaction into one that outlines the relation among attributes. CI methods based on greedy search suffer from the local optima problem because of high variation in the search space...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Shafti, Leila S., Pérez, Eduardo
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 610
container_issue
container_start_page 599
container_title
container_volume 2810
creator Shafti, Leila S.
Pérez, Eduardo
description The aim of constructive induction (CI) is to transform the original data representation of hard concepts with complex interaction into one that outlines the relation among attributes. CI methods based on greedy search suffer from the local optima problem because of high variation in the search space of hard learning problems. To reduce the local optima problem, we propose a CI method based on genetic (evolutionary) algorithms. The method comprises two integrated genetic algorithms to construct functions over subsets of attributes in order to highlight regularities for the learner. Using non-algebraic representation for constructed functions assigns an equal degree of complexity to functions. This reduces the difficulty of constructing complex features. Experiments show that our method is comparable with and in some cases superior to existing CI methods.
doi_str_mv 10.1007/978-3-540-45231-7_55
format Book Chapter
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_15567355</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC3088789_61_612</sourcerecordid><originalsourceid>FETCH-LOGICAL-p318t-ff28fa55dc0aaf5e729b9c4a87b20f2b650105ff236db7cc82cb3432128081743</originalsourceid><addsrcrecordid>eNpFUE1LLDEQjJ-8RfcfeJiLxzyT9GSSHHXxC-Q9EAVvoSeb0dV1Zkyygv_eHhVsGrqprmqoYuxIir9SCHPijOXAdS14rRVIbrzWW2xOMBD4hZltNpONlBygdju_N2EliF02EyAUd6aGfTZzRCHY1X_YPOdnQQVKOGtn7OEy9rGsQnU6jmnA8FSVoVoMfS5pE8rqPVbX_XLahr46wxyXFS3_hp7j-jG2CUl5EbFsUqxu45hijn3BiX3I9jpc5zj_mQfs_uL8bnHFb_5fXi9Ob_gI0hbedcp2qPUyCMROR6Nc60KN1rRKdKpttJBCEwuaZWtCsCq0UIOSypJTsnfAjr__jpgDrruEfVhlP6bVK6YPL7VuDGhNPPXNy3TqH2Py7TC8ZC-FnyL3lJ8HTwn6r3j9FDmJ4Od5Gt42MRcfJ1UgkwnX4QnHElP2IKw11vlGUiv4BLUjfuo</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC3088789_61_612</pqid></control><display><type>book_chapter</type><title>Genetic Approach to Constructive Induction Based on Non-algebraic Feature Representation</title><source>Springer Books</source><creator>Shafti, Leila S. ; Pérez, Eduardo</creator><contributor>Berthold, Michael R ; Borgelt, Christian ; Kruse, Rudolf ; Bradley, Elizabeth ; Lenz, Hans-Joachim</contributor><creatorcontrib>Shafti, Leila S. ; Pérez, Eduardo ; Berthold, Michael R ; Borgelt, Christian ; Kruse, Rudolf ; Bradley, Elizabeth ; Lenz, Hans-Joachim</creatorcontrib><description>The aim of constructive induction (CI) is to transform the original data representation of hard concepts with complex interaction into one that outlines the relation among attributes. CI methods based on greedy search suffer from the local optima problem because of high variation in the search space of hard learning problems. To reduce the local optima problem, we propose a CI method based on genetic (evolutionary) algorithms. The method comprises two integrated genetic algorithms to construct functions over subsets of attributes in order to highlight regularities for the learner. Using non-algebraic representation for constructed functions assigns an equal degree of complexity to functions. This reduces the difficulty of constructing complex features. Experiments show that our method is comparable with and in some cases superior to existing CI methods.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540408130</identifier><identifier>ISBN: 3540408134</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540452317</identifier><identifier>EISBN: 3540452311</identifier><identifier>DOI: 10.1007/978-3-540-45231-7_55</identifier><identifier>OCLC: 934981394</identifier><identifier>LCCallNum: Q334-342</identifier><language>eng</language><publisher>Germany: Springer Berlin / Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Exact sciences and technology ; Genetic Algorithm ; Genetic Operator ; Learning and adaptive systems ; Local Optimum ; Relevant Attribute ; Search Space</subject><ispartof>Advances in Intelligent Data Analysis V, 2003, Vol.2810, p.599-610</ispartof><rights>Springer-Verlag Berlin Heidelberg 2003</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/3088789-l.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/978-3-540-45231-7_55$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/978-3-540-45231-7_55$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4036,4037,27902,38232,41418,42487</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15567355$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Berthold, Michael R</contributor><contributor>Borgelt, Christian</contributor><contributor>Kruse, Rudolf</contributor><contributor>Bradley, Elizabeth</contributor><contributor>Lenz, Hans-Joachim</contributor><creatorcontrib>Shafti, Leila S.</creatorcontrib><creatorcontrib>Pérez, Eduardo</creatorcontrib><title>Genetic Approach to Constructive Induction Based on Non-algebraic Feature Representation</title><title>Advances in Intelligent Data Analysis V</title><description>The aim of constructive induction (CI) is to transform the original data representation of hard concepts with complex interaction into one that outlines the relation among attributes. CI methods based on greedy search suffer from the local optima problem because of high variation in the search space of hard learning problems. To reduce the local optima problem, we propose a CI method based on genetic (evolutionary) algorithms. The method comprises two integrated genetic algorithms to construct functions over subsets of attributes in order to highlight regularities for the learner. Using non-algebraic representation for constructed functions assigns an equal degree of complexity to functions. This reduces the difficulty of constructing complex features. Experiments show that our method is comparable with and in some cases superior to existing CI methods.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Genetic Algorithm</subject><subject>Genetic Operator</subject><subject>Learning and adaptive systems</subject><subject>Local Optimum</subject><subject>Relevant Attribute</subject><subject>Search Space</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540408130</isbn><isbn>3540408134</isbn><isbn>9783540452317</isbn><isbn>3540452311</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2003</creationdate><recordtype>book_chapter</recordtype><recordid>eNpFUE1LLDEQjJ-8RfcfeJiLxzyT9GSSHHXxC-Q9EAVvoSeb0dV1Zkyygv_eHhVsGrqprmqoYuxIir9SCHPijOXAdS14rRVIbrzWW2xOMBD4hZltNpONlBygdju_N2EliF02EyAUd6aGfTZzRCHY1X_YPOdnQQVKOGtn7OEy9rGsQnU6jmnA8FSVoVoMfS5pE8rqPVbX_XLahr46wxyXFS3_hp7j-jG2CUl5EbFsUqxu45hijn3BiX3I9jpc5zj_mQfs_uL8bnHFb_5fXi9Ob_gI0hbedcp2qPUyCMROR6Nc60KN1rRKdKpttJBCEwuaZWtCsCq0UIOSypJTsnfAjr__jpgDrruEfVhlP6bVK6YPL7VuDGhNPPXNy3TqH2Py7TC8ZC-FnyL3lJ8HTwn6r3j9FDmJ4Od5Gt42MRcfJ1UgkwnX4QnHElP2IKw11vlGUiv4BLUjfuo</recordid><startdate>2003</startdate><enddate>2003</enddate><creator>Shafti, Leila S.</creator><creator>Pérez, Eduardo</creator><general>Springer Berlin / Heidelberg</general><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>FFUUA</scope><scope>IQODW</scope></search><sort><creationdate>2003</creationdate><title>Genetic Approach to Constructive Induction Based on Non-algebraic Feature Representation</title><author>Shafti, Leila S. ; Pérez, Eduardo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p318t-ff28fa55dc0aaf5e729b9c4a87b20f2b650105ff236db7cc82cb3432128081743</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Genetic Algorithm</topic><topic>Genetic Operator</topic><topic>Learning and adaptive systems</topic><topic>Local Optimum</topic><topic>Relevant Attribute</topic><topic>Search Space</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shafti, Leila S.</creatorcontrib><creatorcontrib>Pérez, Eduardo</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shafti, Leila S.</au><au>Pérez, Eduardo</au><au>Berthold, Michael R</au><au>Borgelt, Christian</au><au>Kruse, Rudolf</au><au>Bradley, Elizabeth</au><au>Lenz, Hans-Joachim</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Genetic Approach to Constructive Induction Based on Non-algebraic Feature Representation</atitle><btitle>Advances in Intelligent Data Analysis V</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2003</date><risdate>2003</risdate><volume>2810</volume><spage>599</spage><epage>610</epage><pages>599-610</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540408130</isbn><isbn>3540408134</isbn><eisbn>9783540452317</eisbn><eisbn>3540452311</eisbn><abstract>The aim of constructive induction (CI) is to transform the original data representation of hard concepts with complex interaction into one that outlines the relation among attributes. CI methods based on greedy search suffer from the local optima problem because of high variation in the search space of hard learning problems. To reduce the local optima problem, we propose a CI method based on genetic (evolutionary) algorithms. The method comprises two integrated genetic algorithms to construct functions over subsets of attributes in order to highlight regularities for the learner. Using non-algebraic representation for constructed functions assigns an equal degree of complexity to functions. This reduces the difficulty of constructing complex features. Experiments show that our method is comparable with and in some cases superior to existing CI methods.</abstract><cop>Germany</cop><pub>Springer Berlin / Heidelberg</pub><doi>10.1007/978-3-540-45231-7_55</doi><oclcid>934981394</oclcid><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Advances in Intelligent Data Analysis V, 2003, Vol.2810, p.599-610
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_15567355
source Springer Books
subjects Applied sciences
Artificial intelligence
Computer science
control theory
systems
Exact sciences and technology
Genetic Algorithm
Genetic Operator
Learning and adaptive systems
Local Optimum
Relevant Attribute
Search Space
title Genetic Approach to Constructive Induction Based on Non-algebraic Feature Representation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T23%3A34%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Genetic%20Approach%20to%20Constructive%20Induction%20Based%20on%20Non-algebraic%20Feature%20Representation&rft.btitle=Advances%20in%20Intelligent%20Data%20Analysis%20V&rft.au=Shafti,%20Leila%20S.&rft.date=2003&rft.volume=2810&rft.spage=599&rft.epage=610&rft.pages=599-610&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540408130&rft.isbn_list=3540408134&rft_id=info:doi/10.1007/978-3-540-45231-7_55&rft_dat=%3Cproquest_pasca%3EEBC3088789_61_612%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540452317&rft.eisbn_list=3540452311&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC3088789_61_612&rft_id=info:pmid/&rfr_iscdi=true