Hierarchical Method for Stereophotogrammetric Multi-object-Position Measurement

The classical stereophotogrammetric methods based on area correlation are relatively slow if the whole image is analyzed. The new proposed method differs from classical stereophotogrammetric methods in that a hierarchical structure is incorporated in the procedure, so that real-time processing is po...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Tornow, M., Michaelis, B., Kuhn, R. W., Calow, R., Mecke, R.
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 171
container_issue
container_start_page 164
container_title
container_volume 2781
creator Tornow, M.
Michaelis, B.
Kuhn, R. W.
Calow, R.
Mecke, R.
description The classical stereophotogrammetric methods based on area correlation are relatively slow if the whole image is analyzed. The new proposed method differs from classical stereophotogrammetric methods in that a hierarchical structure is incorporated in the procedure, so that real-time processing is possible and the relative error is kept reasonably constant even with large variations in one direction (e.g. in road traffic analysis). This is achieved by adapting image resolution to distance. Computation costs are significantly reduced. The method is very suited for implementation in hardware; it runs in real time and can be applied to moving objects that are automatically segmented. The aim of this research project is to reduce the computation power needed although a complex quality criterion is used.
doi_str_mv 10.1007/978-3-540-45243-0_22
format Book Chapter
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_15552150</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC3088947_30_181</sourcerecordid><originalsourceid>FETCH-LOGICAL-p272t-84df2cc8e8f99b972163e0e65c02ad664fcba7b424dd2ebe84604cbe315cd47b3</originalsourceid><addsrcrecordid>eNotkMtOwzAQRc1TlNI_YNENS4OfsbNEFVCkVkUC1pbjTNqUtA62u-DvcR-zudLcuaOZg9A9JY-UEPVUKo05loJgIZngmBjGztAtz51DQ56jAS0oxZyL8uJkEF1QcYkGhBOGSyX4NRqU2ddUCXKDRjGuSS7OpFRygBbTFoINbtU6243nkFa-Hjc-jD8TBPD9yie_DHazgRRaN57vutRiX63BJfzhY5tav80xG3cBNrBNd-iqsV2E0UmH6Pv15WsyxbPF2_vkeYZ7pljCWtQNc06DbsqyKhWjBQcChXSE2booROMqqyrBRF0zqECLgghXAafS1UJVfIgejnt7G_PlTbBb10bTh3Zjw5-hUkpGJclz7DgXs7VdQjCV9z_RUGL2jE1mbLjJ4MwBqdkzziF-Wh787w5iMrBPufxfsJ1b2T7DiYYTrUuhshqqKf8HsVl7xw</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC3088947_30_181</pqid></control><display><type>book_chapter</type><title>Hierarchical Method for Stereophotogrammetric Multi-object-Position Measurement</title><source>Springer Books</source><creator>Tornow, M. ; Michaelis, B. ; Kuhn, R. W. ; Calow, R. ; Mecke, R.</creator><contributor>Krell, Gerard ; Michaelis, Bernd ; Michaelis, Bernd ; Krell, Gerald</contributor><creatorcontrib>Tornow, M. ; Michaelis, B. ; Kuhn, R. W. ; Calow, R. ; Mecke, R. ; Krell, Gerard ; Michaelis, Bernd ; Michaelis, Bernd ; Krell, Gerald</creatorcontrib><description>The classical stereophotogrammetric methods based on area correlation are relatively slow if the whole image is analyzed. The new proposed method differs from classical stereophotogrammetric methods in that a hierarchical structure is incorporated in the procedure, so that real-time processing is possible and the relative error is kept reasonably constant even with large variations in one direction (e.g. in road traffic analysis). This is achieved by adapting image resolution to distance. Computation costs are significantly reduced. The method is very suited for implementation in hardware; it runs in real time and can be applied to moving objects that are automatically segmented. The aim of this research project is to reduce the computation power needed although a complex quality criterion is used.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540408614</identifier><identifier>ISBN: 9783540408611</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540452435</identifier><identifier>EISBN: 9783540452430</identifier><identifier>DOI: 10.1007/978-3-540-45243-0_22</identifier><identifier>OCLC: 934981740</identifier><identifier>LCCallNum: Q337.5</identifier><language>eng</language><publisher>Germany: Springer Berlin / Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Cross Correlation Function ; Epipolar Line ; Exact sciences and technology ; Hardware Implementation ; Intelligent Vehicle ; Pattern recognition. Digital image processing. Computational geometry ; Reference Block</subject><ispartof>Lecture notes in computer science, 2003, Vol.2781, p.164-171</ispartof><rights>Springer-Verlag Berlin Heidelberg 2003</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/3088947-l.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/978-3-540-45243-0_22$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/978-3-540-45243-0_22$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4050,4051,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15552150$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Krell, Gerard</contributor><contributor>Michaelis, Bernd</contributor><contributor>Michaelis, Bernd</contributor><contributor>Krell, Gerald</contributor><creatorcontrib>Tornow, M.</creatorcontrib><creatorcontrib>Michaelis, B.</creatorcontrib><creatorcontrib>Kuhn, R. W.</creatorcontrib><creatorcontrib>Calow, R.</creatorcontrib><creatorcontrib>Mecke, R.</creatorcontrib><title>Hierarchical Method for Stereophotogrammetric Multi-object-Position Measurement</title><title>Lecture notes in computer science</title><description>The classical stereophotogrammetric methods based on area correlation are relatively slow if the whole image is analyzed. The new proposed method differs from classical stereophotogrammetric methods in that a hierarchical structure is incorporated in the procedure, so that real-time processing is possible and the relative error is kept reasonably constant even with large variations in one direction (e.g. in road traffic analysis). This is achieved by adapting image resolution to distance. Computation costs are significantly reduced. The method is very suited for implementation in hardware; it runs in real time and can be applied to moving objects that are automatically segmented. The aim of this research project is to reduce the computation power needed although a complex quality criterion is used.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Cross Correlation Function</subject><subject>Epipolar Line</subject><subject>Exact sciences and technology</subject><subject>Hardware Implementation</subject><subject>Intelligent Vehicle</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Reference Block</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540408614</isbn><isbn>9783540408611</isbn><isbn>3540452435</isbn><isbn>9783540452430</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2003</creationdate><recordtype>book_chapter</recordtype><recordid>eNotkMtOwzAQRc1TlNI_YNENS4OfsbNEFVCkVkUC1pbjTNqUtA62u-DvcR-zudLcuaOZg9A9JY-UEPVUKo05loJgIZngmBjGztAtz51DQ56jAS0oxZyL8uJkEF1QcYkGhBOGSyX4NRqU2ddUCXKDRjGuSS7OpFRygBbTFoINbtU6243nkFa-Hjc-jD8TBPD9yie_DHazgRRaN57vutRiX63BJfzhY5tav80xG3cBNrBNd-iqsV2E0UmH6Pv15WsyxbPF2_vkeYZ7pljCWtQNc06DbsqyKhWjBQcChXSE2booROMqqyrBRF0zqECLgghXAafS1UJVfIgejnt7G_PlTbBb10bTh3Zjw5-hUkpGJclz7DgXs7VdQjCV9z_RUGL2jE1mbLjJ4MwBqdkzziF-Wh787w5iMrBPufxfsJ1b2T7DiYYTrUuhshqqKf8HsVl7xw</recordid><startdate>2003</startdate><enddate>2003</enddate><creator>Tornow, M.</creator><creator>Michaelis, B.</creator><creator>Kuhn, R. W.</creator><creator>Calow, R.</creator><creator>Mecke, R.</creator><general>Springer Berlin / Heidelberg</general><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>FFUUA</scope><scope>IQODW</scope></search><sort><creationdate>2003</creationdate><title>Hierarchical Method for Stereophotogrammetric Multi-object-Position Measurement</title><author>Tornow, M. ; Michaelis, B. ; Kuhn, R. W. ; Calow, R. ; Mecke, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p272t-84df2cc8e8f99b972163e0e65c02ad664fcba7b424dd2ebe84604cbe315cd47b3</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Cross Correlation Function</topic><topic>Epipolar Line</topic><topic>Exact sciences and technology</topic><topic>Hardware Implementation</topic><topic>Intelligent Vehicle</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Reference Block</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tornow, M.</creatorcontrib><creatorcontrib>Michaelis, B.</creatorcontrib><creatorcontrib>Kuhn, R. W.</creatorcontrib><creatorcontrib>Calow, R.</creatorcontrib><creatorcontrib>Mecke, R.</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tornow, M.</au><au>Michaelis, B.</au><au>Kuhn, R. W.</au><au>Calow, R.</au><au>Mecke, R.</au><au>Krell, Gerard</au><au>Michaelis, Bernd</au><au>Michaelis, Bernd</au><au>Krell, Gerald</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Hierarchical Method for Stereophotogrammetric Multi-object-Position Measurement</atitle><btitle>Lecture notes in computer science</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2003</date><risdate>2003</risdate><volume>2781</volume><spage>164</spage><epage>171</epage><pages>164-171</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540408614</isbn><isbn>9783540408611</isbn><eisbn>3540452435</eisbn><eisbn>9783540452430</eisbn><abstract>The classical stereophotogrammetric methods based on area correlation are relatively slow if the whole image is analyzed. The new proposed method differs from classical stereophotogrammetric methods in that a hierarchical structure is incorporated in the procedure, so that real-time processing is possible and the relative error is kept reasonably constant even with large variations in one direction (e.g. in road traffic analysis). This is achieved by adapting image resolution to distance. Computation costs are significantly reduced. The method is very suited for implementation in hardware; it runs in real time and can be applied to moving objects that are automatically segmented. The aim of this research project is to reduce the computation power needed although a complex quality criterion is used.</abstract><cop>Germany</cop><pub>Springer Berlin / Heidelberg</pub><doi>10.1007/978-3-540-45243-0_22</doi><oclcid>934981740</oclcid><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Lecture notes in computer science, 2003, Vol.2781, p.164-171
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_15552150
source Springer Books
subjects Applied sciences
Artificial intelligence
Computer science
control theory
systems
Cross Correlation Function
Epipolar Line
Exact sciences and technology
Hardware Implementation
Intelligent Vehicle
Pattern recognition. Digital image processing. Computational geometry
Reference Block
title Hierarchical Method for Stereophotogrammetric Multi-object-Position Measurement
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T06%3A14%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Hierarchical%20Method%20for%20Stereophotogrammetric%20Multi-object-Position%20Measurement&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=Tornow,%20M.&rft.date=2003&rft.volume=2781&rft.spage=164&rft.epage=171&rft.pages=164-171&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540408614&rft.isbn_list=9783540408611&rft_id=info:doi/10.1007/978-3-540-45243-0_22&rft_dat=%3Cproquest_pasca%3EEBC3088947_30_181%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540452435&rft.eisbn_list=9783540452430&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC3088947_30_181&rft_id=info:pmid/&rfr_iscdi=true