A Solvable Class of Quadratic Diophantine Equations with Applications to Verification of Infinite-State Systems
A κ-system consists of κ quadratic Diophantine equations over nonnegative integer variables s1, ..., sm, t1, ..., tn of the form: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{u...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 680 |
---|---|
container_issue | |
container_start_page | 668 |
container_title | |
container_volume | 2719 |
creator | Xie, Gaoyan Dang, Zhe Ibarra, Oscar H. |
description | A κ-system consists of κ quadratic Diophantine equations over nonnegative integer variables s1, ..., sm, t1, ..., tn of the form: \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$
\begin{array}{*{20}c}
{\sum\limits_{1 \leqslant j \leqslant l} {B_{1j} \left( {t_1 , \ldots ,t_n } \right)A_{1j} \left( {s_1 , \ldots ,s_m } \right) = C_1 \left( {s_1 , \ldots ,s_m } \right)} } \\
\vdots \\
{\sum\limits_{1 \leqslant j \leqslant l} {B_{kj} \left( {t_1 , \ldots ,t_n } \right)A_{kj} \left( {s_1 , \ldots ,s_m } \right) = C_k \left( {s_1 , \ldots ,s_m } \right)} } \\
\end{array}
$$\end{document} where l, n, m are positive integers, the B’s are nonnegative linear polynomials over t1, ..., tn (i.e., they are of the form b0 + b1t1 + ... + bntn, where each bi is a nonnegative integer), and the A’s and C’s are nonnegative linear polynomials over s1, ..., sm. We show that it is decidable to determine, given any 2-system, whether it has a solution in s1, ..., sm, t1, ..., tn, and give applications of this result to some interesting problems in verification of infinite-state systems. The general problem is undecidable; in fact, there is a fixed k > 2 for which the k-system problem is undecidable. However, certain special cases are decidable and these, too, have applications to verification. |
doi_str_mv | 10.1007/3-540-45061-0_53 |
format | Book Chapter |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_15551629</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC3073280_60_686</sourcerecordid><originalsourceid>FETCH-LOGICAL-p268t-c0a8ccaccc69693bb269a81d3db288d28be63c099383326c013b1f40e5fc76963</originalsourceid><addsrcrecordid>eNotkUFvEzEQhV0oqKHkztEXji5jz9prH6O0lEqVEErL1fI6XmLYrrdrB9R_j5NmNNJI37z3DjOEfOJwxQHaL8hkA6yRoDgDK_GMfMBKjgDekAVXnDPExrwlS9Pq4w4ag805WQCCYKZt8D1ZGKmlaCQXF2SZ82-ohYJX4YKkFd2k4a_rhkDXg8uZpp7-2Lvt7Er09DqmaefGEsdAb573laUx03-x7OhqmoboT6Qk-jPMsT-BQ8jd2McxlsA2xZVANy-5hKf8kbzr3ZDD8jQvyePXm4f1N3b__fZuvbpnk1C6MA9Oe--898oog10nlHGab3HbCa23QndBoQdjUCMK5YFjx_sGgux9Wy14ST6_5k4uezf0sxt9zHaa45ObXyyXUnIlTNVdvepyXY2_wmy7lP5ky8EeXmDR1qPa48Xt4QXVgKfgOT3vQy42HBw-jGV2g9-5qYQ5W4QWhQaramuF_wEgo4Sy</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC3073280_60_686</pqid></control><display><type>book_chapter</type><title>A Solvable Class of Quadratic Diophantine Equations with Applications to Verification of Infinite-State Systems</title><source>Springer Books</source><creator>Xie, Gaoyan ; Dang, Zhe ; Ibarra, Oscar H.</creator><contributor>Woeginger, Gerhard J ; Baeten, Jos C.M ; Parrow, Joachim ; Lenstra, Jan Karel ; Baeten, Jos C. M. ; Lenstra, Jan Karel ; Parrow, Joachim ; Woeginger, Gerhard J.</contributor><creatorcontrib>Xie, Gaoyan ; Dang, Zhe ; Ibarra, Oscar H. ; Woeginger, Gerhard J ; Baeten, Jos C.M ; Parrow, Joachim ; Lenstra, Jan Karel ; Baeten, Jos C. M. ; Lenstra, Jan Karel ; Parrow, Joachim ; Woeginger, Gerhard J.</creatorcontrib><description>A κ-system consists of κ quadratic Diophantine equations over nonnegative integer variables s1, ..., sm, t1, ..., tn of the form: \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$
\begin{array}{*{20}c}
{\sum\limits_{1 \leqslant j \leqslant l} {B_{1j} \left( {t_1 , \ldots ,t_n } \right)A_{1j} \left( {s_1 , \ldots ,s_m } \right) = C_1 \left( {s_1 , \ldots ,s_m } \right)} } \\
\vdots \\
{\sum\limits_{1 \leqslant j \leqslant l} {B_{kj} \left( {t_1 , \ldots ,t_n } \right)A_{kj} \left( {s_1 , \ldots ,s_m } \right) = C_k \left( {s_1 , \ldots ,s_m } \right)} } \\
\end{array}
$$\end{document} where l, n, m are positive integers, the B’s are nonnegative linear polynomials over t1, ..., tn (i.e., they are of the form b0 + b1t1 + ... + bntn, where each bi is a nonnegative integer), and the A’s and C’s are nonnegative linear polynomials over s1, ..., sm. We show that it is decidable to determine, given any 2-system, whether it has a solution in s1, ..., sm, t1, ..., tn, and give applications of this result to some interesting problems in verification of infinite-state systems. The general problem is undecidable; in fact, there is a fixed k > 2 for which the k-system problem is undecidable. However, certain special cases are decidable and these, too, have applications to verification.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540404934</identifier><identifier>ISBN: 3540404937</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540450610</identifier><identifier>EISBN: 9783540450610</identifier><identifier>DOI: 10.1007/3-540-45061-0_53</identifier><identifier>OCLC: 958524512</identifier><identifier>LCCallNum: QA76.758</identifier><language>eng</language><publisher>Germany: Springer Berlin / Heidelberg</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Clock Constraint ; Computer science; control theory; systems ; Exact sciences and technology ; Execution Path ; Incoming Connection ; Linear Polynomial ; Regular Language ; Theoretical computing</subject><ispartof>Automata, Languages and Programming, 2003, Vol.2719, p.668-680</ispartof><rights>Springer-Verlag Berlin Heidelberg 2003</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/3073280-l.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/3-540-45061-0_53$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/3-540-45061-0_53$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4036,4037,27902,38232,41418,42487</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15551629$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Woeginger, Gerhard J</contributor><contributor>Baeten, Jos C.M</contributor><contributor>Parrow, Joachim</contributor><contributor>Lenstra, Jan Karel</contributor><contributor>Baeten, Jos C. M.</contributor><contributor>Lenstra, Jan Karel</contributor><contributor>Parrow, Joachim</contributor><contributor>Woeginger, Gerhard J.</contributor><creatorcontrib>Xie, Gaoyan</creatorcontrib><creatorcontrib>Dang, Zhe</creatorcontrib><creatorcontrib>Ibarra, Oscar H.</creatorcontrib><title>A Solvable Class of Quadratic Diophantine Equations with Applications to Verification of Infinite-State Systems</title><title>Automata, Languages and Programming</title><description>A κ-system consists of κ quadratic Diophantine equations over nonnegative integer variables s1, ..., sm, t1, ..., tn of the form: \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$
\begin{array}{*{20}c}
{\sum\limits_{1 \leqslant j \leqslant l} {B_{1j} \left( {t_1 , \ldots ,t_n } \right)A_{1j} \left( {s_1 , \ldots ,s_m } \right) = C_1 \left( {s_1 , \ldots ,s_m } \right)} } \\
\vdots \\
{\sum\limits_{1 \leqslant j \leqslant l} {B_{kj} \left( {t_1 , \ldots ,t_n } \right)A_{kj} \left( {s_1 , \ldots ,s_m } \right) = C_k \left( {s_1 , \ldots ,s_m } \right)} } \\
\end{array}
$$\end{document} where l, n, m are positive integers, the B’s are nonnegative linear polynomials over t1, ..., tn (i.e., they are of the form b0 + b1t1 + ... + bntn, where each bi is a nonnegative integer), and the A’s and C’s are nonnegative linear polynomials over s1, ..., sm. We show that it is decidable to determine, given any 2-system, whether it has a solution in s1, ..., sm, t1, ..., tn, and give applications of this result to some interesting problems in verification of infinite-state systems. The general problem is undecidable; in fact, there is a fixed k > 2 for which the k-system problem is undecidable. However, certain special cases are decidable and these, too, have applications to verification.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Clock Constraint</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Execution Path</subject><subject>Incoming Connection</subject><subject>Linear Polynomial</subject><subject>Regular Language</subject><subject>Theoretical computing</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540404934</isbn><isbn>3540404937</isbn><isbn>3540450610</isbn><isbn>9783540450610</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2003</creationdate><recordtype>book_chapter</recordtype><recordid>eNotkUFvEzEQhV0oqKHkztEXji5jz9prH6O0lEqVEErL1fI6XmLYrrdrB9R_j5NmNNJI37z3DjOEfOJwxQHaL8hkA6yRoDgDK_GMfMBKjgDekAVXnDPExrwlS9Pq4w4ag805WQCCYKZt8D1ZGKmlaCQXF2SZ82-ohYJX4YKkFd2k4a_rhkDXg8uZpp7-2Lvt7Er09DqmaefGEsdAb573laUx03-x7OhqmoboT6Qk-jPMsT-BQ8jd2McxlsA2xZVANy-5hKf8kbzr3ZDD8jQvyePXm4f1N3b__fZuvbpnk1C6MA9Oe--898oog10nlHGab3HbCa23QndBoQdjUCMK5YFjx_sGgux9Wy14ST6_5k4uezf0sxt9zHaa45ObXyyXUnIlTNVdvepyXY2_wmy7lP5ky8EeXmDR1qPa48Xt4QXVgKfgOT3vQy42HBw-jGV2g9-5qYQ5W4QWhQaramuF_wEgo4Sy</recordid><startdate>2003</startdate><enddate>2003</enddate><creator>Xie, Gaoyan</creator><creator>Dang, Zhe</creator><creator>Ibarra, Oscar H.</creator><general>Springer Berlin / Heidelberg</general><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>FFUUA</scope><scope>IQODW</scope></search><sort><creationdate>2003</creationdate><title>A Solvable Class of Quadratic Diophantine Equations with Applications to Verification of Infinite-State Systems</title><author>Xie, Gaoyan ; Dang, Zhe ; Ibarra, Oscar H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p268t-c0a8ccaccc69693bb269a81d3db288d28be63c099383326c013b1f40e5fc76963</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Clock Constraint</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Execution Path</topic><topic>Incoming Connection</topic><topic>Linear Polynomial</topic><topic>Regular Language</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Gaoyan</creatorcontrib><creatorcontrib>Dang, Zhe</creatorcontrib><creatorcontrib>Ibarra, Oscar H.</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Gaoyan</au><au>Dang, Zhe</au><au>Ibarra, Oscar H.</au><au>Woeginger, Gerhard J</au><au>Baeten, Jos C.M</au><au>Parrow, Joachim</au><au>Lenstra, Jan Karel</au><au>Baeten, Jos C. M.</au><au>Lenstra, Jan Karel</au><au>Parrow, Joachim</au><au>Woeginger, Gerhard J.</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>A Solvable Class of Quadratic Diophantine Equations with Applications to Verification of Infinite-State Systems</atitle><btitle>Automata, Languages and Programming</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2003</date><risdate>2003</risdate><volume>2719</volume><spage>668</spage><epage>680</epage><pages>668-680</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540404934</isbn><isbn>3540404937</isbn><eisbn>3540450610</eisbn><eisbn>9783540450610</eisbn><abstract>A κ-system consists of κ quadratic Diophantine equations over nonnegative integer variables s1, ..., sm, t1, ..., tn of the form: \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$
\begin{array}{*{20}c}
{\sum\limits_{1 \leqslant j \leqslant l} {B_{1j} \left( {t_1 , \ldots ,t_n } \right)A_{1j} \left( {s_1 , \ldots ,s_m } \right) = C_1 \left( {s_1 , \ldots ,s_m } \right)} } \\
\vdots \\
{\sum\limits_{1 \leqslant j \leqslant l} {B_{kj} \left( {t_1 , \ldots ,t_n } \right)A_{kj} \left( {s_1 , \ldots ,s_m } \right) = C_k \left( {s_1 , \ldots ,s_m } \right)} } \\
\end{array}
$$\end{document} where l, n, m are positive integers, the B’s are nonnegative linear polynomials over t1, ..., tn (i.e., they are of the form b0 + b1t1 + ... + bntn, where each bi is a nonnegative integer), and the A’s and C’s are nonnegative linear polynomials over s1, ..., sm. We show that it is decidable to determine, given any 2-system, whether it has a solution in s1, ..., sm, t1, ..., tn, and give applications of this result to some interesting problems in verification of infinite-state systems. The general problem is undecidable; in fact, there is a fixed k > 2 for which the k-system problem is undecidable. However, certain special cases are decidable and these, too, have applications to verification.</abstract><cop>Germany</cop><pub>Springer Berlin / Heidelberg</pub><doi>10.1007/3-540-45061-0_53</doi><oclcid>958524512</oclcid><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Automata, Languages and Programming, 2003, Vol.2719, p.668-680 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_15551629 |
source | Springer Books |
subjects | Algorithmics. Computability. Computer arithmetics Applied sciences Clock Constraint Computer science control theory systems Exact sciences and technology Execution Path Incoming Connection Linear Polynomial Regular Language Theoretical computing |
title | A Solvable Class of Quadratic Diophantine Equations with Applications to Verification of Infinite-State Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T18%3A54%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=A%20Solvable%20Class%20of%20Quadratic%20Diophantine%20Equations%20with%20Applications%20to%20Verification%20of%20Infinite-State%20Systems&rft.btitle=Automata,%20Languages%20and%20Programming&rft.au=Xie,%20Gaoyan&rft.date=2003&rft.volume=2719&rft.spage=668&rft.epage=680&rft.pages=668-680&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540404934&rft.isbn_list=3540404937&rft_id=info:doi/10.1007/3-540-45061-0_53&rft_dat=%3Cproquest_pasca%3EEBC3073280_60_686%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540450610&rft.eisbn_list=9783540450610&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC3073280_60_686&rft_id=info:pmid/&rfr_iscdi=true |