A Solvable Class of Quadratic Diophantine Equations with Applications to Verification of Infinite-State Systems

A κ-system consists of κ quadratic Diophantine equations over nonnegative integer variables s1, ..., sm, t1, ..., tn of the form: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Xie, Gaoyan, Dang, Zhe, Ibarra, Oscar H.
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 680
container_issue
container_start_page 668
container_title
container_volume 2719
creator Xie, Gaoyan
Dang, Zhe
Ibarra, Oscar H.
description A κ-system consists of κ quadratic Diophantine equations over nonnegative integer variables s1, ..., sm, t1, ..., tn of the form: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \begin{array}{*{20}c} {\sum\limits_{1 \leqslant j \leqslant l} {B_{1j} \left( {t_1 , \ldots ,t_n } \right)A_{1j} \left( {s_1 , \ldots ,s_m } \right) = C_1 \left( {s_1 , \ldots ,s_m } \right)} } \\ \vdots \\ {\sum\limits_{1 \leqslant j \leqslant l} {B_{kj} \left( {t_1 , \ldots ,t_n } \right)A_{kj} \left( {s_1 , \ldots ,s_m } \right) = C_k \left( {s_1 , \ldots ,s_m } \right)} } \\ \end{array} $$\end{document} where l, n, m are positive integers, the B’s are nonnegative linear polynomials over t1, ..., tn (i.e., they are of the form b0 + b1t1 + ... + bntn, where each bi is a nonnegative integer), and the A’s and C’s are nonnegative linear polynomials over s1, ..., sm. We show that it is decidable to determine, given any 2-system, whether it has a solution in s1, ..., sm, t1, ..., tn, and give applications of this result to some interesting problems in verification of infinite-state systems. The general problem is undecidable; in fact, there is a fixed k > 2 for which the k-system problem is undecidable. However, certain special cases are decidable and these, too, have applications to verification.
doi_str_mv 10.1007/3-540-45061-0_53
format Book Chapter
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_15551629</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC3073280_60_686</sourcerecordid><originalsourceid>FETCH-LOGICAL-p268t-c0a8ccaccc69693bb269a81d3db288d28be63c099383326c013b1f40e5fc76963</originalsourceid><addsrcrecordid>eNotkUFvEzEQhV0oqKHkztEXji5jz9prH6O0lEqVEErL1fI6XmLYrrdrB9R_j5NmNNJI37z3DjOEfOJwxQHaL8hkA6yRoDgDK_GMfMBKjgDekAVXnDPExrwlS9Pq4w4ag805WQCCYKZt8D1ZGKmlaCQXF2SZ82-ohYJX4YKkFd2k4a_rhkDXg8uZpp7-2Lvt7Er09DqmaefGEsdAb573laUx03-x7OhqmoboT6Qk-jPMsT-BQ8jd2McxlsA2xZVANy-5hKf8kbzr3ZDD8jQvyePXm4f1N3b__fZuvbpnk1C6MA9Oe--898oog10nlHGab3HbCa23QndBoQdjUCMK5YFjx_sGgux9Wy14ST6_5k4uezf0sxt9zHaa45ObXyyXUnIlTNVdvepyXY2_wmy7lP5ky8EeXmDR1qPa48Xt4QXVgKfgOT3vQy42HBw-jGV2g9-5qYQ5W4QWhQaramuF_wEgo4Sy</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC3073280_60_686</pqid></control><display><type>book_chapter</type><title>A Solvable Class of Quadratic Diophantine Equations with Applications to Verification of Infinite-State Systems</title><source>Springer Books</source><creator>Xie, Gaoyan ; Dang, Zhe ; Ibarra, Oscar H.</creator><contributor>Woeginger, Gerhard J ; Baeten, Jos C.M ; Parrow, Joachim ; Lenstra, Jan Karel ; Baeten, Jos C. M. ; Lenstra, Jan Karel ; Parrow, Joachim ; Woeginger, Gerhard J.</contributor><creatorcontrib>Xie, Gaoyan ; Dang, Zhe ; Ibarra, Oscar H. ; Woeginger, Gerhard J ; Baeten, Jos C.M ; Parrow, Joachim ; Lenstra, Jan Karel ; Baeten, Jos C. M. ; Lenstra, Jan Karel ; Parrow, Joachim ; Woeginger, Gerhard J.</creatorcontrib><description>A κ-system consists of κ quadratic Diophantine equations over nonnegative integer variables s1, ..., sm, t1, ..., tn of the form: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \begin{array}{*{20}c} {\sum\limits_{1 \leqslant j \leqslant l} {B_{1j} \left( {t_1 , \ldots ,t_n } \right)A_{1j} \left( {s_1 , \ldots ,s_m } \right) = C_1 \left( {s_1 , \ldots ,s_m } \right)} } \\ \vdots \\ {\sum\limits_{1 \leqslant j \leqslant l} {B_{kj} \left( {t_1 , \ldots ,t_n } \right)A_{kj} \left( {s_1 , \ldots ,s_m } \right) = C_k \left( {s_1 , \ldots ,s_m } \right)} } \\ \end{array} $$\end{document} where l, n, m are positive integers, the B’s are nonnegative linear polynomials over t1, ..., tn (i.e., they are of the form b0 + b1t1 + ... + bntn, where each bi is a nonnegative integer), and the A’s and C’s are nonnegative linear polynomials over s1, ..., sm. We show that it is decidable to determine, given any 2-system, whether it has a solution in s1, ..., sm, t1, ..., tn, and give applications of this result to some interesting problems in verification of infinite-state systems. The general problem is undecidable; in fact, there is a fixed k &gt; 2 for which the k-system problem is undecidable. However, certain special cases are decidable and these, too, have applications to verification.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540404934</identifier><identifier>ISBN: 3540404937</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540450610</identifier><identifier>EISBN: 9783540450610</identifier><identifier>DOI: 10.1007/3-540-45061-0_53</identifier><identifier>OCLC: 958524512</identifier><identifier>LCCallNum: QA76.758</identifier><language>eng</language><publisher>Germany: Springer Berlin / Heidelberg</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Clock Constraint ; Computer science; control theory; systems ; Exact sciences and technology ; Execution Path ; Incoming Connection ; Linear Polynomial ; Regular Language ; Theoretical computing</subject><ispartof>Automata, Languages and Programming, 2003, Vol.2719, p.668-680</ispartof><rights>Springer-Verlag Berlin Heidelberg 2003</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/3073280-l.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/3-540-45061-0_53$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/3-540-45061-0_53$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4036,4037,27902,38232,41418,42487</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15551629$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Woeginger, Gerhard J</contributor><contributor>Baeten, Jos C.M</contributor><contributor>Parrow, Joachim</contributor><contributor>Lenstra, Jan Karel</contributor><contributor>Baeten, Jos C. M.</contributor><contributor>Lenstra, Jan Karel</contributor><contributor>Parrow, Joachim</contributor><contributor>Woeginger, Gerhard J.</contributor><creatorcontrib>Xie, Gaoyan</creatorcontrib><creatorcontrib>Dang, Zhe</creatorcontrib><creatorcontrib>Ibarra, Oscar H.</creatorcontrib><title>A Solvable Class of Quadratic Diophantine Equations with Applications to Verification of Infinite-State Systems</title><title>Automata, Languages and Programming</title><description>A κ-system consists of κ quadratic Diophantine equations over nonnegative integer variables s1, ..., sm, t1, ..., tn of the form: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \begin{array}{*{20}c} {\sum\limits_{1 \leqslant j \leqslant l} {B_{1j} \left( {t_1 , \ldots ,t_n } \right)A_{1j} \left( {s_1 , \ldots ,s_m } \right) = C_1 \left( {s_1 , \ldots ,s_m } \right)} } \\ \vdots \\ {\sum\limits_{1 \leqslant j \leqslant l} {B_{kj} \left( {t_1 , \ldots ,t_n } \right)A_{kj} \left( {s_1 , \ldots ,s_m } \right) = C_k \left( {s_1 , \ldots ,s_m } \right)} } \\ \end{array} $$\end{document} where l, n, m are positive integers, the B’s are nonnegative linear polynomials over t1, ..., tn (i.e., they are of the form b0 + b1t1 + ... + bntn, where each bi is a nonnegative integer), and the A’s and C’s are nonnegative linear polynomials over s1, ..., sm. We show that it is decidable to determine, given any 2-system, whether it has a solution in s1, ..., sm, t1, ..., tn, and give applications of this result to some interesting problems in verification of infinite-state systems. The general problem is undecidable; in fact, there is a fixed k &gt; 2 for which the k-system problem is undecidable. However, certain special cases are decidable and these, too, have applications to verification.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Clock Constraint</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Execution Path</subject><subject>Incoming Connection</subject><subject>Linear Polynomial</subject><subject>Regular Language</subject><subject>Theoretical computing</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540404934</isbn><isbn>3540404937</isbn><isbn>3540450610</isbn><isbn>9783540450610</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2003</creationdate><recordtype>book_chapter</recordtype><recordid>eNotkUFvEzEQhV0oqKHkztEXji5jz9prH6O0lEqVEErL1fI6XmLYrrdrB9R_j5NmNNJI37z3DjOEfOJwxQHaL8hkA6yRoDgDK_GMfMBKjgDekAVXnDPExrwlS9Pq4w4ag805WQCCYKZt8D1ZGKmlaCQXF2SZ82-ohYJX4YKkFd2k4a_rhkDXg8uZpp7-2Lvt7Er09DqmaefGEsdAb573laUx03-x7OhqmoboT6Qk-jPMsT-BQ8jd2McxlsA2xZVANy-5hKf8kbzr3ZDD8jQvyePXm4f1N3b__fZuvbpnk1C6MA9Oe--898oog10nlHGab3HbCa23QndBoQdjUCMK5YFjx_sGgux9Wy14ST6_5k4uezf0sxt9zHaa45ObXyyXUnIlTNVdvepyXY2_wmy7lP5ky8EeXmDR1qPa48Xt4QXVgKfgOT3vQy42HBw-jGV2g9-5qYQ5W4QWhQaramuF_wEgo4Sy</recordid><startdate>2003</startdate><enddate>2003</enddate><creator>Xie, Gaoyan</creator><creator>Dang, Zhe</creator><creator>Ibarra, Oscar H.</creator><general>Springer Berlin / Heidelberg</general><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>FFUUA</scope><scope>IQODW</scope></search><sort><creationdate>2003</creationdate><title>A Solvable Class of Quadratic Diophantine Equations with Applications to Verification of Infinite-State Systems</title><author>Xie, Gaoyan ; Dang, Zhe ; Ibarra, Oscar H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p268t-c0a8ccaccc69693bb269a81d3db288d28be63c099383326c013b1f40e5fc76963</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Clock Constraint</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Execution Path</topic><topic>Incoming Connection</topic><topic>Linear Polynomial</topic><topic>Regular Language</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Gaoyan</creatorcontrib><creatorcontrib>Dang, Zhe</creatorcontrib><creatorcontrib>Ibarra, Oscar H.</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Gaoyan</au><au>Dang, Zhe</au><au>Ibarra, Oscar H.</au><au>Woeginger, Gerhard J</au><au>Baeten, Jos C.M</au><au>Parrow, Joachim</au><au>Lenstra, Jan Karel</au><au>Baeten, Jos C. M.</au><au>Lenstra, Jan Karel</au><au>Parrow, Joachim</au><au>Woeginger, Gerhard J.</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>A Solvable Class of Quadratic Diophantine Equations with Applications to Verification of Infinite-State Systems</atitle><btitle>Automata, Languages and Programming</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2003</date><risdate>2003</risdate><volume>2719</volume><spage>668</spage><epage>680</epage><pages>668-680</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540404934</isbn><isbn>3540404937</isbn><eisbn>3540450610</eisbn><eisbn>9783540450610</eisbn><abstract>A κ-system consists of κ quadratic Diophantine equations over nonnegative integer variables s1, ..., sm, t1, ..., tn of the form: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \begin{array}{*{20}c} {\sum\limits_{1 \leqslant j \leqslant l} {B_{1j} \left( {t_1 , \ldots ,t_n } \right)A_{1j} \left( {s_1 , \ldots ,s_m } \right) = C_1 \left( {s_1 , \ldots ,s_m } \right)} } \\ \vdots \\ {\sum\limits_{1 \leqslant j \leqslant l} {B_{kj} \left( {t_1 , \ldots ,t_n } \right)A_{kj} \left( {s_1 , \ldots ,s_m } \right) = C_k \left( {s_1 , \ldots ,s_m } \right)} } \\ \end{array} $$\end{document} where l, n, m are positive integers, the B’s are nonnegative linear polynomials over t1, ..., tn (i.e., they are of the form b0 + b1t1 + ... + bntn, where each bi is a nonnegative integer), and the A’s and C’s are nonnegative linear polynomials over s1, ..., sm. We show that it is decidable to determine, given any 2-system, whether it has a solution in s1, ..., sm, t1, ..., tn, and give applications of this result to some interesting problems in verification of infinite-state systems. The general problem is undecidable; in fact, there is a fixed k &gt; 2 for which the k-system problem is undecidable. However, certain special cases are decidable and these, too, have applications to verification.</abstract><cop>Germany</cop><pub>Springer Berlin / Heidelberg</pub><doi>10.1007/3-540-45061-0_53</doi><oclcid>958524512</oclcid><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Automata, Languages and Programming, 2003, Vol.2719, p.668-680
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_15551629
source Springer Books
subjects Algorithmics. Computability. Computer arithmetics
Applied sciences
Clock Constraint
Computer science
control theory
systems
Exact sciences and technology
Execution Path
Incoming Connection
Linear Polynomial
Regular Language
Theoretical computing
title A Solvable Class of Quadratic Diophantine Equations with Applications to Verification of Infinite-State Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T18%3A54%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=A%20Solvable%20Class%20of%20Quadratic%20Diophantine%20Equations%20with%20Applications%20to%20Verification%20of%20Infinite-State%20Systems&rft.btitle=Automata,%20Languages%20and%20Programming&rft.au=Xie,%20Gaoyan&rft.date=2003&rft.volume=2719&rft.spage=668&rft.epage=680&rft.pages=668-680&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540404934&rft.isbn_list=3540404937&rft_id=info:doi/10.1007/3-540-45061-0_53&rft_dat=%3Cproquest_pasca%3EEBC3073280_60_686%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540450610&rft.eisbn_list=9783540450610&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC3073280_60_686&rft_id=info:pmid/&rfr_iscdi=true