Improved Approximation Algorithms for Minimum-Space Advertisement Scheduling
We study a scheduling problem involving the optimal placement of advertisement images in a shared space over time. The problem is a generalization of the classical scheduling problem P∥Cmax, and involves scheduling each job on a specified number of parallel machines (not necessarily simultaneously)...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1152 |
---|---|
container_issue | |
container_start_page | 1138 |
container_title | |
container_volume | 2719 |
creator | Dean, Brian C. Goemans, Michel X. |
description | We study a scheduling problem involving the optimal placement of advertisement images in a shared space over time. The problem is a generalization of the classical scheduling problem P∥Cmax, and involves scheduling each job on a specified number of parallel machines (not necessarily simultaneously) with a goal of minimizing the makespan. In 1969 Graham showed that processing jobs in decreasing order of size, assigning each to the currently-least-loaded machine, yields a 4/3-approximation for P∥Cmax. Our main result is a proof that the natural generalization of Graham’s algorithm also yields a 4/3-approximationto the minimum-space advertisement scheduling problem. Previously, this algorithm was only known to give an approximation ratio of 2, and the best known approximation ratio for any algorithm for the minimum-space ad scheduling problem was 3/2. Our proof requires a number of new structural insights, which leads to a new lower bound for the problem and a non-trivial linear programming relaxation. We also provide a pseudo-polynomial approximation scheme for the problem (polynomial in the size of the problem and the number of machines). |
doi_str_mv | 10.1007/3-540-45061-0_87 |
format | Book Chapter |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_15551526</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC3073280_94_1156</sourcerecordid><originalsourceid>FETCH-LOGICAL-p269t-f3b5edacec9386470a09e25ac62fa1a2d1335cd8b9a4803eea0cafc90687367a3</originalsourceid><addsrcrecordid>eNotULtOAzEQNE8RQnrKaygNa6_tO5cR4iUFUQC15fh8ycG9sC8I_h4nYZtdzcyOdoeQSwbXDCC_QSoFUCFBMQqmyA_IOSZkB8AhmTDFGEUU-ojMdF7sOBAaxTGZAAKnOhd4SiZaFpILyfgZmcX4AamQsySckMVTO4T-25fZfEjDT93ase67bN6s-lCP6zZmVR-y57qr201LXwfrfDYvv30Y6-hb343Zq1v7ctPU3eqCnFS2iX7236fk_f7u7faRLl4enm7nCzpwpUda4VL6Mhk5jYUSOVjQnkvrFK8ss7xkiNKVxVJbUQB6b8HZymlQRY4qtzglV3vfwUZnmyrYztXRDCFdH34Nk1IyyVXSXe91MVHdygez7PvPaBiYbb4GTUrM7OI023zTgvg3Dv3XxsfR-O2GS28G27i1HUYfokHIkRdgtDCMSYV_FNx5WQ</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC3073280_94_1156</pqid></control><display><type>book_chapter</type><title>Improved Approximation Algorithms for Minimum-Space Advertisement Scheduling</title><source>Springer Books</source><creator>Dean, Brian C. ; Goemans, Michel X.</creator><contributor>Woeginger, Gerhard J ; Baeten, Jos C.M ; Parrow, Joachim ; Lenstra, Jan Karel ; Baeten, Jos C. M. ; Lenstra, Jan Karel ; Parrow, Joachim ; Woeginger, Gerhard J.</contributor><creatorcontrib>Dean, Brian C. ; Goemans, Michel X. ; Woeginger, Gerhard J ; Baeten, Jos C.M ; Parrow, Joachim ; Lenstra, Jan Karel ; Baeten, Jos C. M. ; Lenstra, Jan Karel ; Parrow, Joachim ; Woeginger, Gerhard J.</creatorcontrib><description>We study a scheduling problem involving the optimal placement of advertisement images in a shared space over time. The problem is a generalization of the classical scheduling problem P∥Cmax, and involves scheduling each job on a specified number of parallel machines (not necessarily simultaneously) with a goal of minimizing the makespan. In 1969 Graham showed that processing jobs in decreasing order of size, assigning each to the currently-least-loaded machine, yields a 4/3-approximation for P∥Cmax. Our main result is a proof that the natural generalization of Graham’s algorithm also yields a 4/3-approximationto the minimum-space advertisement scheduling problem. Previously, this algorithm was only known to give an approximation ratio of 2, and the best known approximation ratio for any algorithm for the minimum-space ad scheduling problem was 3/2. Our proof requires a number of new structural insights, which leads to a new lower bound for the problem and a non-trivial linear programming relaxation. We also provide a pseudo-polynomial approximation scheme for the problem (polynomial in the size of the problem and the number of machines).</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540404934</identifier><identifier>ISBN: 3540404937</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540450610</identifier><identifier>EISBN: 9783540450610</identifier><identifier>DOI: 10.1007/3-540-45061-0_87</identifier><identifier>OCLC: 958524512</identifier><identifier>LCCallNum: QA76.758</identifier><language>eng</language><publisher>Germany: Springer Berlin / Heidelberg</publisher><subject>Applied sciences ; Exact sciences and technology ; Operational research and scientific management ; Operational research. Management science ; Scheduling, sequencing</subject><ispartof>Automata, Languages and Programming, 2003, Vol.2719, p.1138-1152</ispartof><rights>Springer-Verlag Berlin Heidelberg 2003</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/3073280-l.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/3-540-45061-0_87$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/3-540-45061-0_87$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4049,4050,27924,38254,41441,42510</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15551526$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Woeginger, Gerhard J</contributor><contributor>Baeten, Jos C.M</contributor><contributor>Parrow, Joachim</contributor><contributor>Lenstra, Jan Karel</contributor><contributor>Baeten, Jos C. M.</contributor><contributor>Lenstra, Jan Karel</contributor><contributor>Parrow, Joachim</contributor><contributor>Woeginger, Gerhard J.</contributor><creatorcontrib>Dean, Brian C.</creatorcontrib><creatorcontrib>Goemans, Michel X.</creatorcontrib><title>Improved Approximation Algorithms for Minimum-Space Advertisement Scheduling</title><title>Automata, Languages and Programming</title><description>We study a scheduling problem involving the optimal placement of advertisement images in a shared space over time. The problem is a generalization of the classical scheduling problem P∥Cmax, and involves scheduling each job on a specified number of parallel machines (not necessarily simultaneously) with a goal of minimizing the makespan. In 1969 Graham showed that processing jobs in decreasing order of size, assigning each to the currently-least-loaded machine, yields a 4/3-approximation for P∥Cmax. Our main result is a proof that the natural generalization of Graham’s algorithm also yields a 4/3-approximationto the minimum-space advertisement scheduling problem. Previously, this algorithm was only known to give an approximation ratio of 2, and the best known approximation ratio for any algorithm for the minimum-space ad scheduling problem was 3/2. Our proof requires a number of new structural insights, which leads to a new lower bound for the problem and a non-trivial linear programming relaxation. We also provide a pseudo-polynomial approximation scheme for the problem (polynomial in the size of the problem and the number of machines).</description><subject>Applied sciences</subject><subject>Exact sciences and technology</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Scheduling, sequencing</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540404934</isbn><isbn>3540404937</isbn><isbn>3540450610</isbn><isbn>9783540450610</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2003</creationdate><recordtype>book_chapter</recordtype><recordid>eNotULtOAzEQNE8RQnrKaygNa6_tO5cR4iUFUQC15fh8ycG9sC8I_h4nYZtdzcyOdoeQSwbXDCC_QSoFUCFBMQqmyA_IOSZkB8AhmTDFGEUU-ojMdF7sOBAaxTGZAAKnOhd4SiZaFpILyfgZmcX4AamQsySckMVTO4T-25fZfEjDT93ase67bN6s-lCP6zZmVR-y57qr201LXwfrfDYvv30Y6-hb343Zq1v7ctPU3eqCnFS2iX7236fk_f7u7faRLl4enm7nCzpwpUda4VL6Mhk5jYUSOVjQnkvrFK8ss7xkiNKVxVJbUQB6b8HZymlQRY4qtzglV3vfwUZnmyrYztXRDCFdH34Nk1IyyVXSXe91MVHdygez7PvPaBiYbb4GTUrM7OI023zTgvg3Dv3XxsfR-O2GS28G27i1HUYfokHIkRdgtDCMSYV_FNx5WQ</recordid><startdate>2003</startdate><enddate>2003</enddate><creator>Dean, Brian C.</creator><creator>Goemans, Michel X.</creator><general>Springer Berlin / Heidelberg</general><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>FFUUA</scope><scope>IQODW</scope></search><sort><creationdate>2003</creationdate><title>Improved Approximation Algorithms for Minimum-Space Advertisement Scheduling</title><author>Dean, Brian C. ; Goemans, Michel X.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p269t-f3b5edacec9386470a09e25ac62fa1a2d1335cd8b9a4803eea0cafc90687367a3</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Applied sciences</topic><topic>Exact sciences and technology</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Scheduling, sequencing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dean, Brian C.</creatorcontrib><creatorcontrib>Goemans, Michel X.</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dean, Brian C.</au><au>Goemans, Michel X.</au><au>Woeginger, Gerhard J</au><au>Baeten, Jos C.M</au><au>Parrow, Joachim</au><au>Lenstra, Jan Karel</au><au>Baeten, Jos C. M.</au><au>Lenstra, Jan Karel</au><au>Parrow, Joachim</au><au>Woeginger, Gerhard J.</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Improved Approximation Algorithms for Minimum-Space Advertisement Scheduling</atitle><btitle>Automata, Languages and Programming</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2003</date><risdate>2003</risdate><volume>2719</volume><spage>1138</spage><epage>1152</epage><pages>1138-1152</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540404934</isbn><isbn>3540404937</isbn><eisbn>3540450610</eisbn><eisbn>9783540450610</eisbn><abstract>We study a scheduling problem involving the optimal placement of advertisement images in a shared space over time. The problem is a generalization of the classical scheduling problem P∥Cmax, and involves scheduling each job on a specified number of parallel machines (not necessarily simultaneously) with a goal of minimizing the makespan. In 1969 Graham showed that processing jobs in decreasing order of size, assigning each to the currently-least-loaded machine, yields a 4/3-approximation for P∥Cmax. Our main result is a proof that the natural generalization of Graham’s algorithm also yields a 4/3-approximationto the minimum-space advertisement scheduling problem. Previously, this algorithm was only known to give an approximation ratio of 2, and the best known approximation ratio for any algorithm for the minimum-space ad scheduling problem was 3/2. Our proof requires a number of new structural insights, which leads to a new lower bound for the problem and a non-trivial linear programming relaxation. We also provide a pseudo-polynomial approximation scheme for the problem (polynomial in the size of the problem and the number of machines).</abstract><cop>Germany</cop><pub>Springer Berlin / Heidelberg</pub><doi>10.1007/3-540-45061-0_87</doi><oclcid>958524512</oclcid><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Automata, Languages and Programming, 2003, Vol.2719, p.1138-1152 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_15551526 |
source | Springer Books |
subjects | Applied sciences Exact sciences and technology Operational research and scientific management Operational research. Management science Scheduling, sequencing |
title | Improved Approximation Algorithms for Minimum-Space Advertisement Scheduling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A23%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Improved%20Approximation%20Algorithms%20for%20Minimum-Space%20Advertisement%20Scheduling&rft.btitle=Automata,%20Languages%20and%20Programming&rft.au=Dean,%20Brian%20C.&rft.date=2003&rft.volume=2719&rft.spage=1138&rft.epage=1152&rft.pages=1138-1152&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540404934&rft.isbn_list=3540404937&rft_id=info:doi/10.1007/3-540-45061-0_87&rft_dat=%3Cproquest_pasca%3EEBC3073280_94_1156%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540450610&rft.eisbn_list=9783540450610&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC3073280_94_1156&rft_id=info:pmid/&rfr_iscdi=true |