A Clustering Algorithm Based on the Ants Self-Assembly Behavior

We have presented in this paper an ants based clustering algorithm which is inspired from the self-assembling behavior observed in real ants. These ants progressively become connected to an initial point called the support and then successively to other connected ants. The artificial ants that we ha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Azzag, H., Monmarché, N., Slimane, M., Guinot, C., Venturini, G.
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 571
container_issue
container_start_page 564
container_title
container_volume 2801
creator Azzag, H.
Monmarché, N.
Slimane, M.
Guinot, C.
Venturini, G.
description We have presented in this paper an ants based clustering algorithm which is inspired from the self-assembling behavior observed in real ants. These ants progressively become connected to an initial point called the support and then successively to other connected ants. The artificial ants that we have defined similarly build a tree where each ant represents a node/data. Ants use the similarities between the data in order to decide where to connect. We have tested our method on numerical databases (either artificial, real, and from the CE.R.I.E.S.). We show that AntTree improves the clustering process compared to the Kmeans algorithm and to AntClass, a previous approach for data clustering with artificial ants.
doi_str_mv 10.1007/978-3-540-39432-7_60
format Book Chapter
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_15530192</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC3088925_66_580</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-8c54a1701529d9dd3cb76697d2b1809fe93c5fb64b5b37a6666ae56a341b460a3</originalsourceid><addsrcrecordid>eNotkEtPwzAQhM1TlNJ_wCEXjoa114_4hELFS0LiAEjcLCdx2kCaFDsg8e9xgLmstDsz0n6EnDI4ZwD6wuicIpUCKBqBnGqrYIccY9r8Ll53yYwpxiiiMHtkkfzTjQNILfbJDBA4NVrgIZmZZMmZNuKILGJ8gyTkkOd8Ri6LbNl9xtGHtl9lRbcaQjuuN9mVi77Ohj4b1z4r-jFmT75raBGj35Tdd3bl1-6rHcIJOWhcF_3if87Jy8318_KOPjze3i-LB1ohZyPNKykc08AkN7Wpa6xKrZTRNS9ZDqbxBivZlEqUskTtVJLzUjkUrBQKHM7J2V_v1sXKdU1wfdVGuw3txoVvy6REYIYnH__zxe30kQ-2HIb3aBnYCatNmCzaBMr-UrQT1hTC__IwfHz6OFo_pSrfj8F11dptE59oMSEzXFqlrMwBfwBv9XO3</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC3088925_66_580</pqid></control><display><type>book_chapter</type><title>A Clustering Algorithm Based on the Ants Self-Assembly Behavior</title><source>Springer Books</source><creator>Azzag, H. ; Monmarché, N. ; Slimane, M. ; Guinot, C. ; Venturini, G.</creator><contributor>Ziegler, Jens ; Banzhaf, Wolfgang ; Christaller, Thomas ; Kim, Jan, T ; Dittrich, Peter ; Banzhaf, Wolfgang ; Ziegler, Jens ; Christaller, Thomas ; Kim, Jan T. ; Dittrich, Peter</contributor><creatorcontrib>Azzag, H. ; Monmarché, N. ; Slimane, M. ; Guinot, C. ; Venturini, G. ; Ziegler, Jens ; Banzhaf, Wolfgang ; Christaller, Thomas ; Kim, Jan, T ; Dittrich, Peter ; Banzhaf, Wolfgang ; Ziegler, Jens ; Christaller, Thomas ; Kim, Jan T. ; Dittrich, Peter</creatorcontrib><description>We have presented in this paper an ants based clustering algorithm which is inspired from the self-assembling behavior observed in real ants. These ants progressively become connected to an initial point called the support and then successively to other connected ants. The artificial ants that we have defined similarly build a tree where each ant represents a node/data. Ants use the similarities between the data in order to decide where to connect. We have tested our method on numerical databases (either artificial, real, and from the CE.R.I.E.S.). We show that AntTree improves the clustering process compared to the Kmeans algorithm and to AntClass, a previous approach for data clustering with artificial ants.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540200574</identifier><identifier>ISBN: 3540200576</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 354039432X</identifier><identifier>EISBN: 9783540394327</identifier><identifier>DOI: 10.1007/978-3-540-39432-7_60</identifier><identifier>OCLC: 934981794</identifier><identifier>LCCallNum: Q334-342</identifier><language>eng</language><publisher>Germany: Springer Berlin / Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Cluster Algorithm ; Cluster Error ; Computer science; control theory; systems ; Exact sciences and technology ; Incoming Link ; Kmeans Algorithm ; Learning and adaptive systems ; Linepithema Humiles</subject><ispartof>Advances in Artificial Life, 2003, Vol.2801, p.564-571</ispartof><rights>Springer-Verlag Berlin Heidelberg 2003</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-8c54a1701529d9dd3cb76697d2b1809fe93c5fb64b5b37a6666ae56a341b460a3</citedby><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/3088925-l.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/978-3-540-39432-7_60$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/978-3-540-39432-7_60$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4050,4051,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15530192$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Ziegler, Jens</contributor><contributor>Banzhaf, Wolfgang</contributor><contributor>Christaller, Thomas</contributor><contributor>Kim, Jan, T</contributor><contributor>Dittrich, Peter</contributor><contributor>Banzhaf, Wolfgang</contributor><contributor>Ziegler, Jens</contributor><contributor>Christaller, Thomas</contributor><contributor>Kim, Jan T.</contributor><contributor>Dittrich, Peter</contributor><creatorcontrib>Azzag, H.</creatorcontrib><creatorcontrib>Monmarché, N.</creatorcontrib><creatorcontrib>Slimane, M.</creatorcontrib><creatorcontrib>Guinot, C.</creatorcontrib><creatorcontrib>Venturini, G.</creatorcontrib><title>A Clustering Algorithm Based on the Ants Self-Assembly Behavior</title><title>Advances in Artificial Life</title><description>We have presented in this paper an ants based clustering algorithm which is inspired from the self-assembling behavior observed in real ants. These ants progressively become connected to an initial point called the support and then successively to other connected ants. The artificial ants that we have defined similarly build a tree where each ant represents a node/data. Ants use the similarities between the data in order to decide where to connect. We have tested our method on numerical databases (either artificial, real, and from the CE.R.I.E.S.). We show that AntTree improves the clustering process compared to the Kmeans algorithm and to AntClass, a previous approach for data clustering with artificial ants.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Cluster Algorithm</subject><subject>Cluster Error</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Incoming Link</subject><subject>Kmeans Algorithm</subject><subject>Learning and adaptive systems</subject><subject>Linepithema Humiles</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540200574</isbn><isbn>3540200576</isbn><isbn>354039432X</isbn><isbn>9783540394327</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2003</creationdate><recordtype>book_chapter</recordtype><recordid>eNotkEtPwzAQhM1TlNJ_wCEXjoa114_4hELFS0LiAEjcLCdx2kCaFDsg8e9xgLmstDsz0n6EnDI4ZwD6wuicIpUCKBqBnGqrYIccY9r8Ll53yYwpxiiiMHtkkfzTjQNILfbJDBA4NVrgIZmZZMmZNuKILGJ8gyTkkOd8Ri6LbNl9xtGHtl9lRbcaQjuuN9mVi77Ohj4b1z4r-jFmT75raBGj35Tdd3bl1-6rHcIJOWhcF_3if87Jy8318_KOPjze3i-LB1ohZyPNKykc08AkN7Wpa6xKrZTRNS9ZDqbxBivZlEqUskTtVJLzUjkUrBQKHM7J2V_v1sXKdU1wfdVGuw3txoVvy6REYIYnH__zxe30kQ-2HIb3aBnYCatNmCzaBMr-UrQT1hTC__IwfHz6OFo_pSrfj8F11dptE59oMSEzXFqlrMwBfwBv9XO3</recordid><startdate>2003</startdate><enddate>2003</enddate><creator>Azzag, H.</creator><creator>Monmarché, N.</creator><creator>Slimane, M.</creator><creator>Guinot, C.</creator><creator>Venturini, G.</creator><general>Springer Berlin / Heidelberg</general><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>FFUUA</scope><scope>IQODW</scope></search><sort><creationdate>2003</creationdate><title>A Clustering Algorithm Based on the Ants Self-Assembly Behavior</title><author>Azzag, H. ; Monmarché, N. ; Slimane, M. ; Guinot, C. ; Venturini, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-8c54a1701529d9dd3cb76697d2b1809fe93c5fb64b5b37a6666ae56a341b460a3</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Cluster Algorithm</topic><topic>Cluster Error</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Incoming Link</topic><topic>Kmeans Algorithm</topic><topic>Learning and adaptive systems</topic><topic>Linepithema Humiles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Azzag, H.</creatorcontrib><creatorcontrib>Monmarché, N.</creatorcontrib><creatorcontrib>Slimane, M.</creatorcontrib><creatorcontrib>Guinot, C.</creatorcontrib><creatorcontrib>Venturini, G.</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Azzag, H.</au><au>Monmarché, N.</au><au>Slimane, M.</au><au>Guinot, C.</au><au>Venturini, G.</au><au>Ziegler, Jens</au><au>Banzhaf, Wolfgang</au><au>Christaller, Thomas</au><au>Kim, Jan, T</au><au>Dittrich, Peter</au><au>Banzhaf, Wolfgang</au><au>Ziegler, Jens</au><au>Christaller, Thomas</au><au>Kim, Jan T.</au><au>Dittrich, Peter</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>A Clustering Algorithm Based on the Ants Self-Assembly Behavior</atitle><btitle>Advances in Artificial Life</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2003</date><risdate>2003</risdate><volume>2801</volume><spage>564</spage><epage>571</epage><pages>564-571</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540200574</isbn><isbn>3540200576</isbn><eisbn>354039432X</eisbn><eisbn>9783540394327</eisbn><abstract>We have presented in this paper an ants based clustering algorithm which is inspired from the self-assembling behavior observed in real ants. These ants progressively become connected to an initial point called the support and then successively to other connected ants. The artificial ants that we have defined similarly build a tree where each ant represents a node/data. Ants use the similarities between the data in order to decide where to connect. We have tested our method on numerical databases (either artificial, real, and from the CE.R.I.E.S.). We show that AntTree improves the clustering process compared to the Kmeans algorithm and to AntClass, a previous approach for data clustering with artificial ants.</abstract><cop>Germany</cop><pub>Springer Berlin / Heidelberg</pub><doi>10.1007/978-3-540-39432-7_60</doi><oclcid>934981794</oclcid><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Advances in Artificial Life, 2003, Vol.2801, p.564-571
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_15530192
source Springer Books
subjects Applied sciences
Artificial intelligence
Cluster Algorithm
Cluster Error
Computer science
control theory
systems
Exact sciences and technology
Incoming Link
Kmeans Algorithm
Learning and adaptive systems
Linepithema Humiles
title A Clustering Algorithm Based on the Ants Self-Assembly Behavior
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T23%3A11%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=A%20Clustering%20Algorithm%20Based%20on%20the%20Ants%20Self-Assembly%20Behavior&rft.btitle=Advances%20in%20Artificial%20Life&rft.au=Azzag,%20H.&rft.date=2003&rft.volume=2801&rft.spage=564&rft.epage=571&rft.pages=564-571&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540200574&rft.isbn_list=3540200576&rft_id=info:doi/10.1007/978-3-540-39432-7_60&rft_dat=%3Cproquest_pasca%3EEBC3088925_66_580%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&rft.eisbn=354039432X&rft.eisbn_list=9783540394327&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC3088925_66_580&rft_id=info:pmid/&rfr_iscdi=true