Comparing Clusterings by the Variation of Information
This paper proposes an information theoretic criterion for comparing two partitions, or clusterings, of the same data set. The criterion, called variation of information (VI), measures the amount of information lost and gained in changing from clustering \documentclass[12pt]{minimal} \usepackage{ams...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 187 |
---|---|
container_issue | |
container_start_page | 173 |
container_title | |
container_volume | |
creator | MEIL, Marina |
description | This paper proposes an information theoretic criterion for comparing two partitions, or clusterings, of the same data set. The criterion, called variation of information (VI), measures the amount of information lost and gained in changing from clustering \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${\cal C}$\end{document} to clustering \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${\cal C}'$\end{document}. The criterion makes no assumptions about how the clusterings were generated and applies to both soft and hard clusterings. The basic properties of VI are presented and discussed from the point of view of comparing clusterings. In particular, the VI is positive, symmetric and obeys the triangle inequality. Thus, surprisingly enough, it is a true metric on the space of clusterings. |
doi_str_mv | 10.1007/978-3-540-45167-9_14 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_15529932</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>15529932</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-3be10b6c224e76d9e2ea6d982e518be1aa899c95daadd589146f9902cdf986a73</originalsourceid><addsrcrecordid>eNpFkEtPwzAQhM1LopT-Aw65cDTs-hFnjyiiUKkSF-BqOYkDgTSJ4nDov8dpkTjN7sxotfoYu0G4QwBzTybjkmsFXGlMDSeL6oStoi2jefDolC0wReRSKjr7z8AIwHO2AAmCk1Hykl2F8AUAwpBYMJ33u8GNTfeR5O1PmPw8hqTYJ9OnT95j4qam75K-TjZd3Y-7w3rNLmrXBr_60yV7Wz--5s98-_K0yR-2vJRKTlwWHqFISyGUN2lFXngXJRNeYxYz5zKiknTlXFXpjFClNRGIsqopS52RS3Z7vDu4ULq2Hl1XNsEOY7Nz496i1oJIitgTx14Y5v_9aIu-_w4Wwc4AbaRhpY087AGWnQHKX-isXhc</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Comparing Clusterings by the Variation of Information</title><source>Springer Books</source><creator>MEIL, Marina</creator><contributor>Schölkopf, Bernhard ; Warmuth, Manfred K.</contributor><creatorcontrib>MEIL, Marina ; Schölkopf, Bernhard ; Warmuth, Manfred K.</creatorcontrib><description>This paper proposes an information theoretic criterion for comparing two partitions, or clusterings, of the same data set. The criterion, called variation of information (VI), measures the amount of information lost and gained in changing from clustering \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${\cal C}$\end{document} to clustering \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${\cal C}'$\end{document}. The criterion makes no assumptions about how the clusterings were generated and applies to both soft and hard clusterings. The basic properties of VI are presented and discussed from the point of view of comparing clusterings. In particular, the VI is positive, symmetric and obeys the triangle inequality. Thus, surprisingly enough, it is a true metric on the space of clusterings.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540407201</identifier><identifier>ISBN: 3540407200</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540451679</identifier><identifier>EISBN: 3540451676</identifier><identifier>DOI: 10.1007/978-3-540-45167-9_14</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Clustering ; Comparing partitions ; Computer science; control theory; systems ; Exact sciences and technology ; Information theory ; Learning and adaptive systems ; Measures of agreement ; Mutual information</subject><ispartof>Learning Theory and Kernel Machines, 2003, p.173-187</ispartof><rights>Springer-Verlag Berlin Heidelberg 2003</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-3be10b6c224e76d9e2ea6d982e518be1aa899c95daadd589146f9902cdf986a73</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/978-3-540-45167-9_14$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/978-3-540-45167-9_14$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4050,4051,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15529932$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Schölkopf, Bernhard</contributor><contributor>Warmuth, Manfred K.</contributor><creatorcontrib>MEIL, Marina</creatorcontrib><title>Comparing Clusterings by the Variation of Information</title><title>Learning Theory and Kernel Machines</title><description>This paper proposes an information theoretic criterion for comparing two partitions, or clusterings, of the same data set. The criterion, called variation of information (VI), measures the amount of information lost and gained in changing from clustering \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${\cal C}$\end{document} to clustering \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${\cal C}'$\end{document}. The criterion makes no assumptions about how the clusterings were generated and applies to both soft and hard clusterings. The basic properties of VI are presented and discussed from the point of view of comparing clusterings. In particular, the VI is positive, symmetric and obeys the triangle inequality. Thus, surprisingly enough, it is a true metric on the space of clusterings.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Clustering</subject><subject>Comparing partitions</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Information theory</subject><subject>Learning and adaptive systems</subject><subject>Measures of agreement</subject><subject>Mutual information</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540407201</isbn><isbn>3540407200</isbn><isbn>9783540451679</isbn><isbn>3540451676</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2003</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpFkEtPwzAQhM1LopT-Aw65cDTs-hFnjyiiUKkSF-BqOYkDgTSJ4nDov8dpkTjN7sxotfoYu0G4QwBzTybjkmsFXGlMDSeL6oStoi2jefDolC0wReRSKjr7z8AIwHO2AAmCk1Hykl2F8AUAwpBYMJ33u8GNTfeR5O1PmPw8hqTYJ9OnT95j4qam75K-TjZd3Y-7w3rNLmrXBr_60yV7Wz--5s98-_K0yR-2vJRKTlwWHqFISyGUN2lFXngXJRNeYxYz5zKiknTlXFXpjFClNRGIsqopS52RS3Z7vDu4ULq2Hl1XNsEOY7Nz496i1oJIitgTx14Y5v_9aIu-_w4Wwc4AbaRhpY087AGWnQHKX-isXhc</recordid><startdate>2003</startdate><enddate>2003</enddate><creator>MEIL, Marina</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2003</creationdate><title>Comparing Clusterings by the Variation of Information</title><author>MEIL, Marina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-3be10b6c224e76d9e2ea6d982e518be1aa899c95daadd589146f9902cdf986a73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Clustering</topic><topic>Comparing partitions</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Information theory</topic><topic>Learning and adaptive systems</topic><topic>Measures of agreement</topic><topic>Mutual information</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>MEIL, Marina</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MEIL, Marina</au><au>Schölkopf, Bernhard</au><au>Warmuth, Manfred K.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Comparing Clusterings by the Variation of Information</atitle><btitle>Learning Theory and Kernel Machines</btitle><date>2003</date><risdate>2003</risdate><spage>173</spage><epage>187</epage><pages>173-187</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540407201</isbn><isbn>3540407200</isbn><eisbn>9783540451679</eisbn><eisbn>3540451676</eisbn><abstract>This paper proposes an information theoretic criterion for comparing two partitions, or clusterings, of the same data set. The criterion, called variation of information (VI), measures the amount of information lost and gained in changing from clustering \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${\cal C}$\end{document} to clustering \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${\cal C}'$\end{document}. The criterion makes no assumptions about how the clusterings were generated and applies to both soft and hard clusterings. The basic properties of VI are presented and discussed from the point of view of comparing clusterings. In particular, the VI is positive, symmetric and obeys the triangle inequality. Thus, surprisingly enough, it is a true metric on the space of clusterings.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/978-3-540-45167-9_14</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Learning Theory and Kernel Machines, 2003, p.173-187 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_15529932 |
source | Springer Books |
subjects | Applied sciences Artificial intelligence Clustering Comparing partitions Computer science control theory systems Exact sciences and technology Information theory Learning and adaptive systems Measures of agreement Mutual information |
title | Comparing Clusterings by the Variation of Information |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T16%3A30%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Comparing%20Clusterings%20by%20the%20Variation%20of%20Information&rft.btitle=Learning%20Theory%20and%20Kernel%20Machines&rft.au=MEIL,%20Marina&rft.date=2003&rft.spage=173&rft.epage=187&rft.pages=173-187&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540407201&rft.isbn_list=3540407200&rft_id=info:doi/10.1007/978-3-540-45167-9_14&rft_dat=%3Cpascalfrancis_sprin%3E15529932%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540451679&rft.eisbn_list=3540451676&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |