Comparing Clusterings by the Variation of Information

This paper proposes an information theoretic criterion for comparing two partitions, or clusterings, of the same data set. The criterion, called variation of information (VI), measures the amount of information lost and gained in changing from clustering \documentclass[12pt]{minimal} \usepackage{ams...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: MEIL, Marina
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 187
container_issue
container_start_page 173
container_title
container_volume
creator MEIL, Marina
description This paper proposes an information theoretic criterion for comparing two partitions, or clusterings, of the same data set. The criterion, called variation of information (VI), measures the amount of information lost and gained in changing from clustering \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\cal C}$\end{document} to clustering \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\cal C}'$\end{document}. The criterion makes no assumptions about how the clusterings were generated and applies to both soft and hard clusterings. The basic properties of VI are presented and discussed from the point of view of comparing clusterings. In particular, the VI is positive, symmetric and obeys the triangle inequality. Thus, surprisingly enough, it is a true metric on the space of clusterings.
doi_str_mv 10.1007/978-3-540-45167-9_14
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_15529932</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>15529932</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-3be10b6c224e76d9e2ea6d982e518be1aa899c95daadd589146f9902cdf986a73</originalsourceid><addsrcrecordid>eNpFkEtPwzAQhM1LopT-Aw65cDTs-hFnjyiiUKkSF-BqOYkDgTSJ4nDov8dpkTjN7sxotfoYu0G4QwBzTybjkmsFXGlMDSeL6oStoi2jefDolC0wReRSKjr7z8AIwHO2AAmCk1Hykl2F8AUAwpBYMJ33u8GNTfeR5O1PmPw8hqTYJ9OnT95j4qam75K-TjZd3Y-7w3rNLmrXBr_60yV7Wz--5s98-_K0yR-2vJRKTlwWHqFISyGUN2lFXngXJRNeYxYz5zKiknTlXFXpjFClNRGIsqopS52RS3Z7vDu4ULq2Hl1XNsEOY7Nz496i1oJIitgTx14Y5v_9aIu-_w4Wwc4AbaRhpY087AGWnQHKX-isXhc</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Comparing Clusterings by the Variation of Information</title><source>Springer Books</source><creator>MEIL, Marina</creator><contributor>Schölkopf, Bernhard ; Warmuth, Manfred K.</contributor><creatorcontrib>MEIL, Marina ; Schölkopf, Bernhard ; Warmuth, Manfred K.</creatorcontrib><description>This paper proposes an information theoretic criterion for comparing two partitions, or clusterings, of the same data set. The criterion, called variation of information (VI), measures the amount of information lost and gained in changing from clustering \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\cal C}$\end{document} to clustering \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\cal C}'$\end{document}. The criterion makes no assumptions about how the clusterings were generated and applies to both soft and hard clusterings. The basic properties of VI are presented and discussed from the point of view of comparing clusterings. In particular, the VI is positive, symmetric and obeys the triangle inequality. Thus, surprisingly enough, it is a true metric on the space of clusterings.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540407201</identifier><identifier>ISBN: 3540407200</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540451679</identifier><identifier>EISBN: 3540451676</identifier><identifier>DOI: 10.1007/978-3-540-45167-9_14</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Clustering ; Comparing partitions ; Computer science; control theory; systems ; Exact sciences and technology ; Information theory ; Learning and adaptive systems ; Measures of agreement ; Mutual information</subject><ispartof>Learning Theory and Kernel Machines, 2003, p.173-187</ispartof><rights>Springer-Verlag Berlin Heidelberg 2003</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-3be10b6c224e76d9e2ea6d982e518be1aa899c95daadd589146f9902cdf986a73</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/978-3-540-45167-9_14$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/978-3-540-45167-9_14$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4050,4051,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15529932$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Schölkopf, Bernhard</contributor><contributor>Warmuth, Manfred K.</contributor><creatorcontrib>MEIL, Marina</creatorcontrib><title>Comparing Clusterings by the Variation of Information</title><title>Learning Theory and Kernel Machines</title><description>This paper proposes an information theoretic criterion for comparing two partitions, or clusterings, of the same data set. The criterion, called variation of information (VI), measures the amount of information lost and gained in changing from clustering \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\cal C}$\end{document} to clustering \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\cal C}'$\end{document}. The criterion makes no assumptions about how the clusterings were generated and applies to both soft and hard clusterings. The basic properties of VI are presented and discussed from the point of view of comparing clusterings. In particular, the VI is positive, symmetric and obeys the triangle inequality. Thus, surprisingly enough, it is a true metric on the space of clusterings.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Clustering</subject><subject>Comparing partitions</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Information theory</subject><subject>Learning and adaptive systems</subject><subject>Measures of agreement</subject><subject>Mutual information</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540407201</isbn><isbn>3540407200</isbn><isbn>9783540451679</isbn><isbn>3540451676</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2003</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpFkEtPwzAQhM1LopT-Aw65cDTs-hFnjyiiUKkSF-BqOYkDgTSJ4nDov8dpkTjN7sxotfoYu0G4QwBzTybjkmsFXGlMDSeL6oStoi2jefDolC0wReRSKjr7z8AIwHO2AAmCk1Hykl2F8AUAwpBYMJ33u8GNTfeR5O1PmPw8hqTYJ9OnT95j4qam75K-TjZd3Y-7w3rNLmrXBr_60yV7Wz--5s98-_K0yR-2vJRKTlwWHqFISyGUN2lFXngXJRNeYxYz5zKiknTlXFXpjFClNRGIsqopS52RS3Z7vDu4ULq2Hl1XNsEOY7Nz496i1oJIitgTx14Y5v_9aIu-_w4Wwc4AbaRhpY087AGWnQHKX-isXhc</recordid><startdate>2003</startdate><enddate>2003</enddate><creator>MEIL, Marina</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2003</creationdate><title>Comparing Clusterings by the Variation of Information</title><author>MEIL, Marina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-3be10b6c224e76d9e2ea6d982e518be1aa899c95daadd589146f9902cdf986a73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Clustering</topic><topic>Comparing partitions</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Information theory</topic><topic>Learning and adaptive systems</topic><topic>Measures of agreement</topic><topic>Mutual information</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>MEIL, Marina</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MEIL, Marina</au><au>Schölkopf, Bernhard</au><au>Warmuth, Manfred K.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Comparing Clusterings by the Variation of Information</atitle><btitle>Learning Theory and Kernel Machines</btitle><date>2003</date><risdate>2003</risdate><spage>173</spage><epage>187</epage><pages>173-187</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540407201</isbn><isbn>3540407200</isbn><eisbn>9783540451679</eisbn><eisbn>3540451676</eisbn><abstract>This paper proposes an information theoretic criterion for comparing two partitions, or clusterings, of the same data set. The criterion, called variation of information (VI), measures the amount of information lost and gained in changing from clustering \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\cal C}$\end{document} to clustering \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\cal C}'$\end{document}. The criterion makes no assumptions about how the clusterings were generated and applies to both soft and hard clusterings. The basic properties of VI are presented and discussed from the point of view of comparing clusterings. In particular, the VI is positive, symmetric and obeys the triangle inequality. Thus, surprisingly enough, it is a true metric on the space of clusterings.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/978-3-540-45167-9_14</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Learning Theory and Kernel Machines, 2003, p.173-187
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_15529932
source Springer Books
subjects Applied sciences
Artificial intelligence
Clustering
Comparing partitions
Computer science
control theory
systems
Exact sciences and technology
Information theory
Learning and adaptive systems
Measures of agreement
Mutual information
title Comparing Clusterings by the Variation of Information
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T16%3A30%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Comparing%20Clusterings%20by%20the%20Variation%20of%20Information&rft.btitle=Learning%20Theory%20and%20Kernel%20Machines&rft.au=MEIL,%20Marina&rft.date=2003&rft.spage=173&rft.epage=187&rft.pages=173-187&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540407201&rft.isbn_list=3540407200&rft_id=info:doi/10.1007/978-3-540-45167-9_14&rft_dat=%3Cpascalfrancis_sprin%3E15529932%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540451679&rft.eisbn_list=3540451676&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true