Recommendation Models for User Accesses to Web Pages

Predicting the next request of a user as she visits Web pages has gained importance asWeb-based activity increases. There are a number of different approaches to prediction. Markov models and their variations, collaborative filtering models, or models based on pattern recognition techniques such as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Gündüz, Ş., Özsu, M.T.
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1010
container_issue
container_start_page 1003
container_title
container_volume 2714
creator Gündüz, Ş.
Özsu, M.T.
description Predicting the next request of a user as she visits Web pages has gained importance asWeb-based activity increases. There are a number of different approaches to prediction. Markov models and their variations, collaborative filtering models, or models based on pattern recognition techniques such as sequence mining, association rule mining, clustering user sessions or user, have been found well suited for this problem. In this paper we review these techniques and also highlight two new models that we have proposed. They consider the user access patterns to the pages as well as the time spent on these pages. We report experimental studies that show that the proposed methods can achieve a better accuracy than the other approaches.
doi_str_mv 10.1007/3-540-44989-2_119
format Book Chapter
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_15509815</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC3071497_125_984</sourcerecordid><originalsourceid>FETCH-LOGICAL-p270t-bfc7abfea22c556a7386bdbcffe1d9f315aad829ff4f91833a2117ac7fbe968b3</originalsourceid><addsrcrecordid>eNotkDtPwzAQx81TlNIPwJaFMdTns2t7RBUvqQiEqBgtxzmXQpsUOwx8e9KWu-Gk_-OGH2OXwK-Bcz3GUkleSmmNLYUDsAdsZLXBXt2J5pANYAJQIkp7xM53Rr9GHLMBRy5KqyWesoFVRgkEEGdslPMn7wcFSBQDJl8ptOs1NbXvlm1TPLU1rXIR21TMM6XiJgTKmXLRtcU7VcWLX1C-YCfRrzKN_u-Qze9u36YP5ez5_nF6Mys3QvOurGLQvorkhQhKTbxGM6nqKsRIUNuIoLyvjbAxymjBIHoBoH3QsSI7MRUO2dX-78bn4Fcx-SYss9uk5dqnXwdKcWtA9bnxPpd7q1lQclXbfmUH3G1BOnQ9Gbdj5nYg-4b8_5za7x_KnaNtJVDTJb8KH37TUcoOuQZptQOhnDUS_wBzD3B6</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC3071497_125_984</pqid></control><display><type>book_chapter</type><title>Recommendation Models for User Accesses to Web Pages</title><source>Springer Books</source><creator>Gündüz, Ş. ; Özsu, M.T.</creator><contributor>Alpaydin, Ethem ; Oja, Erkki ; Xu, Lei ; Kaynak, Okyay ; Xu, Lei ; Kaynak, Okyay ; Oja, Erkki ; Alpaydin, Ethem</contributor><creatorcontrib>Gündüz, Ş. ; Özsu, M.T. ; Alpaydin, Ethem ; Oja, Erkki ; Xu, Lei ; Kaynak, Okyay ; Xu, Lei ; Kaynak, Okyay ; Oja, Erkki ; Alpaydin, Ethem</creatorcontrib><description>Predicting the next request of a user as she visits Web pages has gained importance asWeb-based activity increases. There are a number of different approaches to prediction. Markov models and their variations, collaborative filtering models, or models based on pattern recognition techniques such as sequence mining, association rule mining, clustering user sessions or user, have been found well suited for this problem. In this paper we review these techniques and also highlight two new models that we have proposed. They consider the user access patterns to the pages as well as the time spent on these pages. We report experimental studies that show that the proposed methods can achieve a better accuracy than the other approaches.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540404082</identifier><identifier>ISBN: 9783540404088</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540449898</identifier><identifier>EISBN: 3540449892</identifier><identifier>DOI: 10.1007/3-540-44989-2_119</identifier><identifier>OCLC: 958523112</identifier><identifier>LCCallNum: QA75.5-76.95</identifier><language>eng</language><publisher>Germany: Springer Berlin / Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Computer systems and distributed systems. User interface ; Exact sciences and technology ; Implicit Rating ; Learning and adaptive systems ; Recommendation Model ; Recommender System ; Software ; Uniform Resource Locator ; User Session</subject><ispartof>Artificial Neural Networks and Neural Information Processing -- ICANN/ICONIP 2003, 2003, Vol.2714, p.1003-1010</ispartof><rights>Springer-Verlag Berlin Heidelberg 2003</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/3071497-l.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/3-540-44989-2_119$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/3-540-44989-2_119$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4050,4051,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15509815$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Alpaydin, Ethem</contributor><contributor>Oja, Erkki</contributor><contributor>Xu, Lei</contributor><contributor>Kaynak, Okyay</contributor><contributor>Xu, Lei</contributor><contributor>Kaynak, Okyay</contributor><contributor>Oja, Erkki</contributor><contributor>Alpaydin, Ethem</contributor><creatorcontrib>Gündüz, Ş.</creatorcontrib><creatorcontrib>Özsu, M.T.</creatorcontrib><title>Recommendation Models for User Accesses to Web Pages</title><title>Artificial Neural Networks and Neural Information Processing -- ICANN/ICONIP 2003</title><description>Predicting the next request of a user as she visits Web pages has gained importance asWeb-based activity increases. There are a number of different approaches to prediction. Markov models and their variations, collaborative filtering models, or models based on pattern recognition techniques such as sequence mining, association rule mining, clustering user sessions or user, have been found well suited for this problem. In this paper we review these techniques and also highlight two new models that we have proposed. They consider the user access patterns to the pages as well as the time spent on these pages. We report experimental studies that show that the proposed methods can achieve a better accuracy than the other approaches.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Computer systems and distributed systems. User interface</subject><subject>Exact sciences and technology</subject><subject>Implicit Rating</subject><subject>Learning and adaptive systems</subject><subject>Recommendation Model</subject><subject>Recommender System</subject><subject>Software</subject><subject>Uniform Resource Locator</subject><subject>User Session</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540404082</isbn><isbn>9783540404088</isbn><isbn>9783540449898</isbn><isbn>3540449892</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2003</creationdate><recordtype>book_chapter</recordtype><recordid>eNotkDtPwzAQx81TlNIPwJaFMdTns2t7RBUvqQiEqBgtxzmXQpsUOwx8e9KWu-Gk_-OGH2OXwK-Bcz3GUkleSmmNLYUDsAdsZLXBXt2J5pANYAJQIkp7xM53Rr9GHLMBRy5KqyWesoFVRgkEEGdslPMn7wcFSBQDJl8ptOs1NbXvlm1TPLU1rXIR21TMM6XiJgTKmXLRtcU7VcWLX1C-YCfRrzKN_u-Qze9u36YP5ez5_nF6Mys3QvOurGLQvorkhQhKTbxGM6nqKsRIUNuIoLyvjbAxymjBIHoBoH3QsSI7MRUO2dX-78bn4Fcx-SYss9uk5dqnXwdKcWtA9bnxPpd7q1lQclXbfmUH3G1BOnQ9Gbdj5nYg-4b8_5za7x_KnaNtJVDTJb8KH37TUcoOuQZptQOhnDUS_wBzD3B6</recordid><startdate>2003</startdate><enddate>2003</enddate><creator>Gündüz, Ş.</creator><creator>Özsu, M.T.</creator><general>Springer Berlin / Heidelberg</general><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>FFUUA</scope><scope>IQODW</scope></search><sort><creationdate>2003</creationdate><title>Recommendation Models for User Accesses to Web Pages</title><author>Gündüz, Ş. ; Özsu, M.T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p270t-bfc7abfea22c556a7386bdbcffe1d9f315aad829ff4f91833a2117ac7fbe968b3</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Computer systems and distributed systems. User interface</topic><topic>Exact sciences and technology</topic><topic>Implicit Rating</topic><topic>Learning and adaptive systems</topic><topic>Recommendation Model</topic><topic>Recommender System</topic><topic>Software</topic><topic>Uniform Resource Locator</topic><topic>User Session</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gündüz, Ş.</creatorcontrib><creatorcontrib>Özsu, M.T.</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gündüz, Ş.</au><au>Özsu, M.T.</au><au>Alpaydin, Ethem</au><au>Oja, Erkki</au><au>Xu, Lei</au><au>Kaynak, Okyay</au><au>Xu, Lei</au><au>Kaynak, Okyay</au><au>Oja, Erkki</au><au>Alpaydin, Ethem</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Recommendation Models for User Accesses to Web Pages</atitle><btitle>Artificial Neural Networks and Neural Information Processing -- ICANN/ICONIP 2003</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2003</date><risdate>2003</risdate><volume>2714</volume><spage>1003</spage><epage>1010</epage><pages>1003-1010</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540404082</isbn><isbn>9783540404088</isbn><eisbn>9783540449898</eisbn><eisbn>3540449892</eisbn><abstract>Predicting the next request of a user as she visits Web pages has gained importance asWeb-based activity increases. There are a number of different approaches to prediction. Markov models and their variations, collaborative filtering models, or models based on pattern recognition techniques such as sequence mining, association rule mining, clustering user sessions or user, have been found well suited for this problem. In this paper we review these techniques and also highlight two new models that we have proposed. They consider the user access patterns to the pages as well as the time spent on these pages. We report experimental studies that show that the proposed methods can achieve a better accuracy than the other approaches.</abstract><cop>Germany</cop><pub>Springer Berlin / Heidelberg</pub><doi>10.1007/3-540-44989-2_119</doi><oclcid>958523112</oclcid><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Artificial Neural Networks and Neural Information Processing -- ICANN/ICONIP 2003, 2003, Vol.2714, p.1003-1010
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_15509815
source Springer Books
subjects Applied sciences
Artificial intelligence
Computer science
control theory
systems
Computer systems and distributed systems. User interface
Exact sciences and technology
Implicit Rating
Learning and adaptive systems
Recommendation Model
Recommender System
Software
Uniform Resource Locator
User Session
title Recommendation Models for User Accesses to Web Pages
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T17%3A01%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Recommendation%20Models%20for%20User%20Accesses%20to%20Web%20Pages&rft.btitle=Artificial%20Neural%20Networks%20and%20Neural%20Information%20Processing%20--%20ICANN/ICONIP%202003&rft.au=G%C3%BCnd%C3%BCz,%20%C5%9E.&rft.date=2003&rft.volume=2714&rft.spage=1003&rft.epage=1010&rft.pages=1003-1010&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540404082&rft.isbn_list=9783540404088&rft_id=info:doi/10.1007/3-540-44989-2_119&rft_dat=%3Cproquest_pasca%3EEBC3071497_125_984%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540449898&rft.eisbn_list=3540449892&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC3071497_125_984&rft_id=info:pmid/&rfr_iscdi=true