Robust Line Matching and Estimate of Homographies Simultaneously

This paper addresses the robust matching of lines simultaneously to the computation of homographies between two views, when structure and motion are unknown. Using viewpoint non invariant measures, such as image dependent parameters, gives a lot of non matched or wrong matched features. The inclusio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Guerrero, José J., Sagüés, Carlos
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 307
container_issue
container_start_page 297
container_title
container_volume
creator Guerrero, José J.
Sagüés, Carlos
description This paper addresses the robust matching of lines simultaneously to the computation of homographies between two views, when structure and motion are unknown. Using viewpoint non invariant measures, such as image dependent parameters, gives a lot of non matched or wrong matched features. The inclusion of projective transformations gives much better results with short computing overload. We use line features which can usually be extracted more accurately than points and they can be used in cases when there are partial occlusion. In the first stage, the lines are matched to the weighted nearest neighbor using brightness-based and geometric-based image parameters. From them, robust homographies can be computed, allowing to reject wrong matches, and growing also additional matches in the final stage. Although lines and points are dual features to compute homographies, some problems related to data representation and normalization using lines are considered. Results show that the robust technique turns out stable, and its application is useful in many situations. We have used it for robot homing and we also present automatic matching of lines at aerial images.
doi_str_mv 10.1007/978-3-540-44871-6_35
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_15492061</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>15492061</sourcerecordid><originalsourceid>FETCH-LOGICAL-p228t-d6910fb157485fce461121a0cd186c307d45397170536b54bad995190f9976403</originalsourceid><addsrcrecordid>eNotkEtPwzAQhM1LopT-Aw65cDTsev2Ib6CqUKQiJB5ny3m1gTSJ4vTQf49b2MtIM6PV6GPsBuEOAcy9NSknriRwKVODXDtSJ-yKonM06JRNUCNyImnP2Cz2jxkINPqcTYBAcGskXbJZCN8QT1oSEibs4b3LdmFMVnVbJq9-zDd1u058WySLMNZbP5ZJVyXLbtutB99v6jIkH_V214y-LbtdaPbX7KLyTShn_zplX0-Lz_mSr96eX-aPK94LkY680BahylAZmaoqL2WcK9BDXmCqcwJTSEXWoAFFOlMy84W1Ci1U1hotgabs9u9v70Pum2rwbV4H1w9x5LB3qKQVoDH2xF8vxKhdl4PLuu4nOAR3YOkiG0cu0nFHdO7Akn4BtR9gMg</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Robust Line Matching and Estimate of Homographies Simultaneously</title><source>Springer Books</source><creator>Guerrero, José J. ; Sagüés, Carlos</creator><contributor>Campilho, Aurélio J. C. ; de la Blanca, Nicolás Pérez ; Sanfeliu, Alberto ; Perales, Francisco José</contributor><creatorcontrib>Guerrero, José J. ; Sagüés, Carlos ; Campilho, Aurélio J. C. ; de la Blanca, Nicolás Pérez ; Sanfeliu, Alberto ; Perales, Francisco José</creatorcontrib><description>This paper addresses the robust matching of lines simultaneously to the computation of homographies between two views, when structure and motion are unknown. Using viewpoint non invariant measures, such as image dependent parameters, gives a lot of non matched or wrong matched features. The inclusion of projective transformations gives much better results with short computing overload. We use line features which can usually be extracted more accurately than points and they can be used in cases when there are partial occlusion. In the first stage, the lines are matched to the weighted nearest neighbor using brightness-based and geometric-based image parameters. From them, robust homographies can be computed, allowing to reject wrong matches, and growing also additional matches in the final stage. Although lines and points are dual features to compute homographies, some problems related to data representation and normalization using lines are considered. Results show that the robust technique turns out stable, and its application is useful in many situations. We have used it for robot homing and we also present automatic matching of lines at aerial images.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540402176</identifier><identifier>ISBN: 3540402179</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540448713</identifier><identifier>EISBN: 9783540448716</identifier><identifier>DOI: 10.1007/978-3-540-44871-6_35</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Aerial Image ; Applied sciences ; Artificial intelligence ; Basic Match ; Camera Motion ; Computer science; control theory; systems ; Exact sciences and technology ; Pattern recognition. Digital image processing. Computational geometry ; Projective Transformation ; Scene Structure</subject><ispartof>Lecture notes in computer science, 2003, p.297-307</ispartof><rights>Springer-Verlag Berlin Heidelberg 2003</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/978-3-540-44871-6_35$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/978-3-540-44871-6_35$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,776,777,781,786,787,790,4036,4037,27906,38236,41423,42492</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15492061$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Campilho, Aurélio J. C.</contributor><contributor>de la Blanca, Nicolás Pérez</contributor><contributor>Sanfeliu, Alberto</contributor><contributor>Perales, Francisco José</contributor><creatorcontrib>Guerrero, José J.</creatorcontrib><creatorcontrib>Sagüés, Carlos</creatorcontrib><title>Robust Line Matching and Estimate of Homographies Simultaneously</title><title>Lecture notes in computer science</title><description>This paper addresses the robust matching of lines simultaneously to the computation of homographies between two views, when structure and motion are unknown. Using viewpoint non invariant measures, such as image dependent parameters, gives a lot of non matched or wrong matched features. The inclusion of projective transformations gives much better results with short computing overload. We use line features which can usually be extracted more accurately than points and they can be used in cases when there are partial occlusion. In the first stage, the lines are matched to the weighted nearest neighbor using brightness-based and geometric-based image parameters. From them, robust homographies can be computed, allowing to reject wrong matches, and growing also additional matches in the final stage. Although lines and points are dual features to compute homographies, some problems related to data representation and normalization using lines are considered. Results show that the robust technique turns out stable, and its application is useful in many situations. We have used it for robot homing and we also present automatic matching of lines at aerial images.</description><subject>Aerial Image</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Basic Match</subject><subject>Camera Motion</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Projective Transformation</subject><subject>Scene Structure</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540402176</isbn><isbn>3540402179</isbn><isbn>3540448713</isbn><isbn>9783540448716</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2003</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkEtPwzAQhM1LopT-Aw65cDTsev2Ib6CqUKQiJB5ny3m1gTSJ4vTQf49b2MtIM6PV6GPsBuEOAcy9NSknriRwKVODXDtSJ-yKonM06JRNUCNyImnP2Cz2jxkINPqcTYBAcGskXbJZCN8QT1oSEibs4b3LdmFMVnVbJq9-zDd1u058WySLMNZbP5ZJVyXLbtutB99v6jIkH_V214y-LbtdaPbX7KLyTShn_zplX0-Lz_mSr96eX-aPK94LkY680BahylAZmaoqL2WcK9BDXmCqcwJTSEXWoAFFOlMy84W1Ci1U1hotgabs9u9v70Pum2rwbV4H1w9x5LB3qKQVoDH2xF8vxKhdl4PLuu4nOAR3YOkiG0cu0nFHdO7Akn4BtR9gMg</recordid><startdate>2003</startdate><enddate>2003</enddate><creator>Guerrero, José J.</creator><creator>Sagüés, Carlos</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2003</creationdate><title>Robust Line Matching and Estimate of Homographies Simultaneously</title><author>Guerrero, José J. ; Sagüés, Carlos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p228t-d6910fb157485fce461121a0cd186c307d45397170536b54bad995190f9976403</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Aerial Image</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Basic Match</topic><topic>Camera Motion</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Projective Transformation</topic><topic>Scene Structure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guerrero, José J.</creatorcontrib><creatorcontrib>Sagüés, Carlos</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guerrero, José J.</au><au>Sagüés, Carlos</au><au>Campilho, Aurélio J. C.</au><au>de la Blanca, Nicolás Pérez</au><au>Sanfeliu, Alberto</au><au>Perales, Francisco José</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Robust Line Matching and Estimate of Homographies Simultaneously</atitle><btitle>Lecture notes in computer science</btitle><date>2003</date><risdate>2003</risdate><spage>297</spage><epage>307</epage><pages>297-307</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540402176</isbn><isbn>3540402179</isbn><eisbn>3540448713</eisbn><eisbn>9783540448716</eisbn><abstract>This paper addresses the robust matching of lines simultaneously to the computation of homographies between two views, when structure and motion are unknown. Using viewpoint non invariant measures, such as image dependent parameters, gives a lot of non matched or wrong matched features. The inclusion of projective transformations gives much better results with short computing overload. We use line features which can usually be extracted more accurately than points and they can be used in cases when there are partial occlusion. In the first stage, the lines are matched to the weighted nearest neighbor using brightness-based and geometric-based image parameters. From them, robust homographies can be computed, allowing to reject wrong matches, and growing also additional matches in the final stage. Although lines and points are dual features to compute homographies, some problems related to data representation and normalization using lines are considered. Results show that the robust technique turns out stable, and its application is useful in many situations. We have used it for robot homing and we also present automatic matching of lines at aerial images.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/978-3-540-44871-6_35</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Lecture notes in computer science, 2003, p.297-307
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_15492061
source Springer Books
subjects Aerial Image
Applied sciences
Artificial intelligence
Basic Match
Camera Motion
Computer science
control theory
systems
Exact sciences and technology
Pattern recognition. Digital image processing. Computational geometry
Projective Transformation
Scene Structure
title Robust Line Matching and Estimate of Homographies Simultaneously
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T19%3A01%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Robust%20Line%20Matching%20and%20Estimate%20of%20Homographies%20Simultaneously&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=Guerrero,%20Jos%C3%A9%20J.&rft.date=2003&rft.spage=297&rft.epage=307&rft.pages=297-307&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540402176&rft.isbn_list=3540402179&rft_id=info:doi/10.1007/978-3-540-44871-6_35&rft_dat=%3Cpascalfrancis_sprin%3E15492061%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540448713&rft.eisbn_list=9783540448716&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true