Reconstruction of Quadrics from Two Polarization Views
This paper addresses the problem of reconstructing texture-less objects of quadric like shape. It is known that a quadric can be uniquely recovered from its apparent contours in three views. But, in the case of only two views the reconstruction is a one parameter family of quadrics. Polarization ima...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 820 |
---|---|
container_issue | |
container_start_page | 810 |
container_title | |
container_volume | |
creator | Rahmann, Stefan |
description | This paper addresses the problem of reconstructing texture-less objects of quadric like shape. It is known that a quadric can be uniquely recovered from its apparent contours in three views. But, in the case of only two views the reconstruction is a one parameter family of quadrics. Polarization imaging provides additional geometric information compared to simple intensity based imaging. The polarization image encodes the projection of the surface normals onto the image and therefore provides constraints on the surface geometry. In this paper it is proven that two polarization views of a quadric contain sufficient information for a complete determination of its shape. The proof itself is constructive leading to a closed-form solution for the quadric. Additionally, an indirect algorithm is presented which uses both polarization and apparent contours. By experiments it is shown that the presented algorithm produces accurate reconstruction results. |
doi_str_mv | 10.1007/978-3-540-44871-6_94 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_15492006</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>15492006</sourcerecordid><originalsourceid>FETCH-LOGICAL-j294t-9e74e912f56bc51c034c8f69c1fb3fe3597da8409aba80135c2157d902f907103</originalsourceid><addsrcrecordid>eNotkMtOwzAQRc1LopT-AYtsWBpmPE4cL1HFS6rEQ4Wt5bgxSmnjyk5VwdeTpszmSvcezeIwdoVwgwDqVquSE88lcClLhbwwWh6xC-qboaBjNsICkRNJfcImPT9sIFAVp2wEBIJrJemcTVJaQn9Sk5AwYsV77UKburh1XRPaLPjsbWsXsXEp8zGss_kuZK9hZWPzawfis6l36ZKdebtK9eQ_x-zj4X4-feKzl8fn6d2ML4WWHde1krVG4fOicjk6IOlKX2iHviJfU67VwpYStK1sCUi5E5irhQbhNSgEGrPrw9-NTc6ufLSta5LZxGZt44_BXGoBUPScOHCpn9qvOpoqhO9kEMzeoOmNGDK9EzMIM3uD9AcGFl2b</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Reconstruction of Quadrics from Two Polarization Views</title><source>Springer Books</source><creator>Rahmann, Stefan</creator><contributor>Campilho, Aurélio J. C. ; de la Blanca, Nicolás Pérez ; Sanfeliu, Alberto ; Perales, Francisco José</contributor><creatorcontrib>Rahmann, Stefan ; Campilho, Aurélio J. C. ; de la Blanca, Nicolás Pérez ; Sanfeliu, Alberto ; Perales, Francisco José</creatorcontrib><description>This paper addresses the problem of reconstructing texture-less objects of quadric like shape. It is known that a quadric can be uniquely recovered from its apparent contours in three views. But, in the case of only two views the reconstruction is a one parameter family of quadrics. Polarization imaging provides additional geometric information compared to simple intensity based imaging. The polarization image encodes the projection of the surface normals onto the image and therefore provides constraints on the surface geometry. In this paper it is proven that two polarization views of a quadric contain sufficient information for a complete determination of its shape. The proof itself is constructive leading to a closed-form solution for the quadric. Additionally, an indirect algorithm is presented which uses both polarization and apparent contours. By experiments it is shown that the presented algorithm produces accurate reconstruction results.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540402176</identifier><identifier>ISBN: 3540402179</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540448713</identifier><identifier>EISBN: 9783540448716</identifier><identifier>DOI: 10.1007/978-3-540-44871-6_94</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Exact sciences and technology ; Pattern recognition. Digital image processing. Computational geometry</subject><ispartof>Lecture notes in computer science, 2003, p.810-820</ispartof><rights>Springer-Verlag Berlin Heidelberg 2003</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/978-3-540-44871-6_94$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/978-3-540-44871-6_94$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4050,4051,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15492006$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Campilho, Aurélio J. C.</contributor><contributor>de la Blanca, Nicolás Pérez</contributor><contributor>Sanfeliu, Alberto</contributor><contributor>Perales, Francisco José</contributor><creatorcontrib>Rahmann, Stefan</creatorcontrib><title>Reconstruction of Quadrics from Two Polarization Views</title><title>Lecture notes in computer science</title><description>This paper addresses the problem of reconstructing texture-less objects of quadric like shape. It is known that a quadric can be uniquely recovered from its apparent contours in three views. But, in the case of only two views the reconstruction is a one parameter family of quadrics. Polarization imaging provides additional geometric information compared to simple intensity based imaging. The polarization image encodes the projection of the surface normals onto the image and therefore provides constraints on the surface geometry. In this paper it is proven that two polarization views of a quadric contain sufficient information for a complete determination of its shape. The proof itself is constructive leading to a closed-form solution for the quadric. Additionally, an indirect algorithm is presented which uses both polarization and apparent contours. By experiments it is shown that the presented algorithm produces accurate reconstruction results.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540402176</isbn><isbn>3540402179</isbn><isbn>3540448713</isbn><isbn>9783540448716</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2003</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkMtOwzAQRc1LopT-AYtsWBpmPE4cL1HFS6rEQ4Wt5bgxSmnjyk5VwdeTpszmSvcezeIwdoVwgwDqVquSE88lcClLhbwwWh6xC-qboaBjNsICkRNJfcImPT9sIFAVp2wEBIJrJemcTVJaQn9Sk5AwYsV77UKburh1XRPaLPjsbWsXsXEp8zGss_kuZK9hZWPzawfis6l36ZKdebtK9eQ_x-zj4X4-feKzl8fn6d2ML4WWHde1krVG4fOicjk6IOlKX2iHviJfU67VwpYStK1sCUi5E5irhQbhNSgEGrPrw9-NTc6ufLSta5LZxGZt44_BXGoBUPScOHCpn9qvOpoqhO9kEMzeoOmNGDK9EzMIM3uD9AcGFl2b</recordid><startdate>2003</startdate><enddate>2003</enddate><creator>Rahmann, Stefan</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2003</creationdate><title>Reconstruction of Quadrics from Two Polarization Views</title><author>Rahmann, Stefan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j294t-9e74e912f56bc51c034c8f69c1fb3fe3597da8409aba80135c2157d902f907103</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rahmann, Stefan</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rahmann, Stefan</au><au>Campilho, Aurélio J. C.</au><au>de la Blanca, Nicolás Pérez</au><au>Sanfeliu, Alberto</au><au>Perales, Francisco José</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Reconstruction of Quadrics from Two Polarization Views</atitle><btitle>Lecture notes in computer science</btitle><date>2003</date><risdate>2003</risdate><spage>810</spage><epage>820</epage><pages>810-820</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540402176</isbn><isbn>3540402179</isbn><eisbn>3540448713</eisbn><eisbn>9783540448716</eisbn><abstract>This paper addresses the problem of reconstructing texture-less objects of quadric like shape. It is known that a quadric can be uniquely recovered from its apparent contours in three views. But, in the case of only two views the reconstruction is a one parameter family of quadrics. Polarization imaging provides additional geometric information compared to simple intensity based imaging. The polarization image encodes the projection of the surface normals onto the image and therefore provides constraints on the surface geometry. In this paper it is proven that two polarization views of a quadric contain sufficient information for a complete determination of its shape. The proof itself is constructive leading to a closed-form solution for the quadric. Additionally, an indirect algorithm is presented which uses both polarization and apparent contours. By experiments it is shown that the presented algorithm produces accurate reconstruction results.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/978-3-540-44871-6_94</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Lecture notes in computer science, 2003, p.810-820 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_15492006 |
source | Springer Books |
subjects | Applied sciences Artificial intelligence Computer science control theory systems Exact sciences and technology Pattern recognition. Digital image processing. Computational geometry |
title | Reconstruction of Quadrics from Two Polarization Views |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T08%3A42%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Reconstruction%20of%20Quadrics%20from%20Two%20Polarization%20Views&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=Rahmann,%20Stefan&rft.date=2003&rft.spage=810&rft.epage=820&rft.pages=810-820&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540402176&rft.isbn_list=3540402179&rft_id=info:doi/10.1007/978-3-540-44871-6_94&rft_dat=%3Cpascalfrancis_sprin%3E15492006%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540448713&rft.eisbn_list=9783540448716&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |