Reconstruction of Quadrics from Two Polarization Views

This paper addresses the problem of reconstructing texture-less objects of quadric like shape. It is known that a quadric can be uniquely recovered from its apparent contours in three views. But, in the case of only two views the reconstruction is a one parameter family of quadrics. Polarization ima...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Rahmann, Stefan
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 820
container_issue
container_start_page 810
container_title
container_volume
creator Rahmann, Stefan
description This paper addresses the problem of reconstructing texture-less objects of quadric like shape. It is known that a quadric can be uniquely recovered from its apparent contours in three views. But, in the case of only two views the reconstruction is a one parameter family of quadrics. Polarization imaging provides additional geometric information compared to simple intensity based imaging. The polarization image encodes the projection of the surface normals onto the image and therefore provides constraints on the surface geometry. In this paper it is proven that two polarization views of a quadric contain sufficient information for a complete determination of its shape. The proof itself is constructive leading to a closed-form solution for the quadric. Additionally, an indirect algorithm is presented which uses both polarization and apparent contours. By experiments it is shown that the presented algorithm produces accurate reconstruction results.
doi_str_mv 10.1007/978-3-540-44871-6_94
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_15492006</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>15492006</sourcerecordid><originalsourceid>FETCH-LOGICAL-j294t-9e74e912f56bc51c034c8f69c1fb3fe3597da8409aba80135c2157d902f907103</originalsourceid><addsrcrecordid>eNotkMtOwzAQRc1LopT-AYtsWBpmPE4cL1HFS6rEQ4Wt5bgxSmnjyk5VwdeTpszmSvcezeIwdoVwgwDqVquSE88lcClLhbwwWh6xC-qboaBjNsICkRNJfcImPT9sIFAVp2wEBIJrJemcTVJaQn9Sk5AwYsV77UKburh1XRPaLPjsbWsXsXEp8zGss_kuZK9hZWPzawfis6l36ZKdebtK9eQ_x-zj4X4-feKzl8fn6d2ML4WWHde1krVG4fOicjk6IOlKX2iHviJfU67VwpYStK1sCUi5E5irhQbhNSgEGrPrw9-NTc6ufLSta5LZxGZt44_BXGoBUPScOHCpn9qvOpoqhO9kEMzeoOmNGDK9EzMIM3uD9AcGFl2b</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Reconstruction of Quadrics from Two Polarization Views</title><source>Springer Books</source><creator>Rahmann, Stefan</creator><contributor>Campilho, Aurélio J. C. ; de la Blanca, Nicolás Pérez ; Sanfeliu, Alberto ; Perales, Francisco José</contributor><creatorcontrib>Rahmann, Stefan ; Campilho, Aurélio J. C. ; de la Blanca, Nicolás Pérez ; Sanfeliu, Alberto ; Perales, Francisco José</creatorcontrib><description>This paper addresses the problem of reconstructing texture-less objects of quadric like shape. It is known that a quadric can be uniquely recovered from its apparent contours in three views. But, in the case of only two views the reconstruction is a one parameter family of quadrics. Polarization imaging provides additional geometric information compared to simple intensity based imaging. The polarization image encodes the projection of the surface normals onto the image and therefore provides constraints on the surface geometry. In this paper it is proven that two polarization views of a quadric contain sufficient information for a complete determination of its shape. The proof itself is constructive leading to a closed-form solution for the quadric. Additionally, an indirect algorithm is presented which uses both polarization and apparent contours. By experiments it is shown that the presented algorithm produces accurate reconstruction results.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540402176</identifier><identifier>ISBN: 3540402179</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540448713</identifier><identifier>EISBN: 9783540448716</identifier><identifier>DOI: 10.1007/978-3-540-44871-6_94</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Exact sciences and technology ; Pattern recognition. Digital image processing. Computational geometry</subject><ispartof>Lecture notes in computer science, 2003, p.810-820</ispartof><rights>Springer-Verlag Berlin Heidelberg 2003</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/978-3-540-44871-6_94$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/978-3-540-44871-6_94$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4050,4051,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15492006$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Campilho, Aurélio J. C.</contributor><contributor>de la Blanca, Nicolás Pérez</contributor><contributor>Sanfeliu, Alberto</contributor><contributor>Perales, Francisco José</contributor><creatorcontrib>Rahmann, Stefan</creatorcontrib><title>Reconstruction of Quadrics from Two Polarization Views</title><title>Lecture notes in computer science</title><description>This paper addresses the problem of reconstructing texture-less objects of quadric like shape. It is known that a quadric can be uniquely recovered from its apparent contours in three views. But, in the case of only two views the reconstruction is a one parameter family of quadrics. Polarization imaging provides additional geometric information compared to simple intensity based imaging. The polarization image encodes the projection of the surface normals onto the image and therefore provides constraints on the surface geometry. In this paper it is proven that two polarization views of a quadric contain sufficient information for a complete determination of its shape. The proof itself is constructive leading to a closed-form solution for the quadric. Additionally, an indirect algorithm is presented which uses both polarization and apparent contours. By experiments it is shown that the presented algorithm produces accurate reconstruction results.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540402176</isbn><isbn>3540402179</isbn><isbn>3540448713</isbn><isbn>9783540448716</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2003</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkMtOwzAQRc1LopT-AYtsWBpmPE4cL1HFS6rEQ4Wt5bgxSmnjyk5VwdeTpszmSvcezeIwdoVwgwDqVquSE88lcClLhbwwWh6xC-qboaBjNsICkRNJfcImPT9sIFAVp2wEBIJrJemcTVJaQn9Sk5AwYsV77UKburh1XRPaLPjsbWsXsXEp8zGss_kuZK9hZWPzawfis6l36ZKdebtK9eQ_x-zj4X4-feKzl8fn6d2ML4WWHde1krVG4fOicjk6IOlKX2iHviJfU67VwpYStK1sCUi5E5irhQbhNSgEGrPrw9-NTc6ufLSta5LZxGZt44_BXGoBUPScOHCpn9qvOpoqhO9kEMzeoOmNGDK9EzMIM3uD9AcGFl2b</recordid><startdate>2003</startdate><enddate>2003</enddate><creator>Rahmann, Stefan</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2003</creationdate><title>Reconstruction of Quadrics from Two Polarization Views</title><author>Rahmann, Stefan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j294t-9e74e912f56bc51c034c8f69c1fb3fe3597da8409aba80135c2157d902f907103</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rahmann, Stefan</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rahmann, Stefan</au><au>Campilho, Aurélio J. C.</au><au>de la Blanca, Nicolás Pérez</au><au>Sanfeliu, Alberto</au><au>Perales, Francisco José</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Reconstruction of Quadrics from Two Polarization Views</atitle><btitle>Lecture notes in computer science</btitle><date>2003</date><risdate>2003</risdate><spage>810</spage><epage>820</epage><pages>810-820</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540402176</isbn><isbn>3540402179</isbn><eisbn>3540448713</eisbn><eisbn>9783540448716</eisbn><abstract>This paper addresses the problem of reconstructing texture-less objects of quadric like shape. It is known that a quadric can be uniquely recovered from its apparent contours in three views. But, in the case of only two views the reconstruction is a one parameter family of quadrics. Polarization imaging provides additional geometric information compared to simple intensity based imaging. The polarization image encodes the projection of the surface normals onto the image and therefore provides constraints on the surface geometry. In this paper it is proven that two polarization views of a quadric contain sufficient information for a complete determination of its shape. The proof itself is constructive leading to a closed-form solution for the quadric. Additionally, an indirect algorithm is presented which uses both polarization and apparent contours. By experiments it is shown that the presented algorithm produces accurate reconstruction results.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/978-3-540-44871-6_94</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Lecture notes in computer science, 2003, p.810-820
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_15492006
source Springer Books
subjects Applied sciences
Artificial intelligence
Computer science
control theory
systems
Exact sciences and technology
Pattern recognition. Digital image processing. Computational geometry
title Reconstruction of Quadrics from Two Polarization Views
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T08%3A42%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Reconstruction%20of%20Quadrics%20from%20Two%20Polarization%20Views&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=Rahmann,%20Stefan&rft.date=2003&rft.spage=810&rft.epage=820&rft.pages=810-820&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540402176&rft.isbn_list=3540402179&rft_id=info:doi/10.1007/978-3-540-44871-6_94&rft_dat=%3Cpascalfrancis_sprin%3E15492006%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540448713&rft.eisbn_list=9783540448716&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true