Numerical simulation of scour by a free falling jet

In this paper the numerical simulation of scour by a free falling jet is presented. It is assumed that the flow is two-dimensional, the alluvium is cohesionless, and that at the beginning of a run, i.e. at t = 0, the movable bed is flat. The scour simulation involves three basic steps: simulation of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hydraulic research 2003-01, Vol.41 (5), p.533-539
Hauptverfasser: Neyshabouri, A.A. Salehi, Da Suva, A.M. Ferreira, Barron, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 539
container_issue 5
container_start_page 533
container_title Journal of hydraulic research
container_volume 41
creator Neyshabouri, A.A. Salehi
Da Suva, A.M. Ferreira
Barron, R.
description In this paper the numerical simulation of scour by a free falling jet is presented. It is assumed that the flow is two-dimensional, the alluvium is cohesionless, and that at the beginning of a run, i.e. at t = 0, the movable bed is flat. The scour simulation involves three basic steps: simulation of a turbulent flow in the stilling basin of a free falling jet, determination of distribution of sand concentration, and computation of bed deformation. The flow simulation rests on the momentum equations, the continuity equation, and on the k-ε equations for turbulent flows. A general 2-D non-orthogonal curvilinear computational domain is used; the solution is by the finite volume method, with a non-staggered grid arrangement. The SIMPLE scheme is used for pressure correction and the checkerboard problem is solved with a momentum interpolation scheme. The distribution of sand concentration is determined on the basis of the convection-diffusion equation. An appropriate boundary condition for concentration at the bed, which takes into account the effect of bed-load, is implemented. The bed deformation is computed with the aid of the sediment continuity equation. The aforementioned steps are repeated until the equilibrium bed surface (i.e. the equilibrium scour hole) is reached. The results of the numerical simulation appear to compare favourably with experiment.
doi_str_mv 10.1080/00221680309499998
format Article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_15176300</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>27882089</sourcerecordid><originalsourceid>FETCH-LOGICAL-a428t-bb4d4a2e70285a0e2f1ea1ed38de429d4a245a4edfe2bd339b5cb19f1895bd643</originalsourceid><addsrcrecordid>eNqFkEtLxDAQgIMouK7-AG-56K2aV9sEvMjiCxa96Dmk7USypI0mLbr_3iyreFjQuQzDfN8MMwidUnJBiSSXhDBGK0k4UULlkHtoRiUVBSO12kezTb_IQHWIjlJa5bKqVDVD_HHqIbrWeJxcP3kzujDgYHFqwxRxs8YG2wiArfHeDa94BeMxOshVgpPvPEcvtzfPi_ti-XT3sLheFkYwORZNIzphGNSEydIQYJaCodBx2YFgatMTpRHQWWBNx7lqyrahylKpyqarBJ-j8-3ctxjeJ0ij7l1qwXszQJiSZrWUjEiVQboF2xhSimD1W3S9iWtNid68R--8Jztn38NNytfbaIbWpV-xpHXFCcnc1ZZzgw2xNx8h-k6PZu1D_JH4X2vqf_UdS4-fI_8C9jKJhg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27882089</pqid></control><display><type>article</type><title>Numerical simulation of scour by a free falling jet</title><source>Taylor &amp; Francis Journals Complete</source><creator>Neyshabouri, A.A. Salehi ; Da Suva, A.M. Ferreira ; Barron, R.</creator><creatorcontrib>Neyshabouri, A.A. Salehi ; Da Suva, A.M. Ferreira ; Barron, R.</creatorcontrib><description>In this paper the numerical simulation of scour by a free falling jet is presented. It is assumed that the flow is two-dimensional, the alluvium is cohesionless, and that at the beginning of a run, i.e. at t = 0, the movable bed is flat. The scour simulation involves three basic steps: simulation of a turbulent flow in the stilling basin of a free falling jet, determination of distribution of sand concentration, and computation of bed deformation. The flow simulation rests on the momentum equations, the continuity equation, and on the k-ε equations for turbulent flows. A general 2-D non-orthogonal curvilinear computational domain is used; the solution is by the finite volume method, with a non-staggered grid arrangement. The SIMPLE scheme is used for pressure correction and the checkerboard problem is solved with a momentum interpolation scheme. The distribution of sand concentration is determined on the basis of the convection-diffusion equation. An appropriate boundary condition for concentration at the bed, which takes into account the effect of bed-load, is implemented. The bed deformation is computed with the aid of the sediment continuity equation. The aforementioned steps are repeated until the equilibrium bed surface (i.e. the equilibrium scour hole) is reached. The results of the numerical simulation appear to compare favourably with experiment.</description><identifier>ISSN: 0022-1686</identifier><identifier>EISSN: 1814-2079</identifier><identifier>DOI: 10.1080/00221680309499998</identifier><identifier>CODEN: JHYRAF</identifier><language>eng</language><publisher>Delft: Taylor &amp; Francis Group</publisher><subject>Earth sciences ; Earth, ocean, space ; Engineering and environment geology. Geothermics ; Engineering geology ; Exact sciences and technology ; Free falling jet ; Hydrology ; Hydrology. Hydrogeology ; numerical simulation ; scour ; turbulent flow</subject><ispartof>Journal of hydraulic research, 2003-01, Vol.41 (5), p.533-539</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 2003</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a428t-bb4d4a2e70285a0e2f1ea1ed38de429d4a245a4edfe2bd339b5cb19f1895bd643</citedby><cites>FETCH-LOGICAL-a428t-bb4d4a2e70285a0e2f1ea1ed38de429d4a245a4edfe2bd339b5cb19f1895bd643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/00221680309499998$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/00221680309499998$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,59647,60436</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15176300$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Neyshabouri, A.A. Salehi</creatorcontrib><creatorcontrib>Da Suva, A.M. Ferreira</creatorcontrib><creatorcontrib>Barron, R.</creatorcontrib><title>Numerical simulation of scour by a free falling jet</title><title>Journal of hydraulic research</title><description>In this paper the numerical simulation of scour by a free falling jet is presented. It is assumed that the flow is two-dimensional, the alluvium is cohesionless, and that at the beginning of a run, i.e. at t = 0, the movable bed is flat. The scour simulation involves three basic steps: simulation of a turbulent flow in the stilling basin of a free falling jet, determination of distribution of sand concentration, and computation of bed deformation. The flow simulation rests on the momentum equations, the continuity equation, and on the k-ε equations for turbulent flows. A general 2-D non-orthogonal curvilinear computational domain is used; the solution is by the finite volume method, with a non-staggered grid arrangement. The SIMPLE scheme is used for pressure correction and the checkerboard problem is solved with a momentum interpolation scheme. The distribution of sand concentration is determined on the basis of the convection-diffusion equation. An appropriate boundary condition for concentration at the bed, which takes into account the effect of bed-load, is implemented. The bed deformation is computed with the aid of the sediment continuity equation. The aforementioned steps are repeated until the equilibrium bed surface (i.e. the equilibrium scour hole) is reached. The results of the numerical simulation appear to compare favourably with experiment.</description><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Engineering and environment geology. Geothermics</subject><subject>Engineering geology</subject><subject>Exact sciences and technology</subject><subject>Free falling jet</subject><subject>Hydrology</subject><subject>Hydrology. Hydrogeology</subject><subject>numerical simulation</subject><subject>scour</subject><subject>turbulent flow</subject><issn>0022-1686</issn><issn>1814-2079</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLxDAQgIMouK7-AG-56K2aV9sEvMjiCxa96Dmk7USypI0mLbr_3iyreFjQuQzDfN8MMwidUnJBiSSXhDBGK0k4UULlkHtoRiUVBSO12kezTb_IQHWIjlJa5bKqVDVD_HHqIbrWeJxcP3kzujDgYHFqwxRxs8YG2wiArfHeDa94BeMxOshVgpPvPEcvtzfPi_ti-XT3sLheFkYwORZNIzphGNSEydIQYJaCodBx2YFgatMTpRHQWWBNx7lqyrahylKpyqarBJ-j8-3ctxjeJ0ij7l1qwXszQJiSZrWUjEiVQboF2xhSimD1W3S9iWtNid68R--8Jztn38NNytfbaIbWpV-xpHXFCcnc1ZZzgw2xNx8h-k6PZu1D_JH4X2vqf_UdS4-fI_8C9jKJhg</recordid><startdate>20030101</startdate><enddate>20030101</enddate><creator>Neyshabouri, A.A. Salehi</creator><creator>Da Suva, A.M. Ferreira</creator><creator>Barron, R.</creator><general>Taylor &amp; Francis Group</general><general>International Association for Hydraulic Research</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20030101</creationdate><title>Numerical simulation of scour by a free falling jet</title><author>Neyshabouri, A.A. Salehi ; Da Suva, A.M. Ferreira ; Barron, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a428t-bb4d4a2e70285a0e2f1ea1ed38de429d4a245a4edfe2bd339b5cb19f1895bd643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Engineering and environment geology. Geothermics</topic><topic>Engineering geology</topic><topic>Exact sciences and technology</topic><topic>Free falling jet</topic><topic>Hydrology</topic><topic>Hydrology. Hydrogeology</topic><topic>numerical simulation</topic><topic>scour</topic><topic>turbulent flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Neyshabouri, A.A. Salehi</creatorcontrib><creatorcontrib>Da Suva, A.M. Ferreira</creatorcontrib><creatorcontrib>Barron, R.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of hydraulic research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Neyshabouri, A.A. Salehi</au><au>Da Suva, A.M. Ferreira</au><au>Barron, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical simulation of scour by a free falling jet</atitle><jtitle>Journal of hydraulic research</jtitle><date>2003-01-01</date><risdate>2003</risdate><volume>41</volume><issue>5</issue><spage>533</spage><epage>539</epage><pages>533-539</pages><issn>0022-1686</issn><eissn>1814-2079</eissn><coden>JHYRAF</coden><abstract>In this paper the numerical simulation of scour by a free falling jet is presented. It is assumed that the flow is two-dimensional, the alluvium is cohesionless, and that at the beginning of a run, i.e. at t = 0, the movable bed is flat. The scour simulation involves three basic steps: simulation of a turbulent flow in the stilling basin of a free falling jet, determination of distribution of sand concentration, and computation of bed deformation. The flow simulation rests on the momentum equations, the continuity equation, and on the k-ε equations for turbulent flows. A general 2-D non-orthogonal curvilinear computational domain is used; the solution is by the finite volume method, with a non-staggered grid arrangement. The SIMPLE scheme is used for pressure correction and the checkerboard problem is solved with a momentum interpolation scheme. The distribution of sand concentration is determined on the basis of the convection-diffusion equation. An appropriate boundary condition for concentration at the bed, which takes into account the effect of bed-load, is implemented. The bed deformation is computed with the aid of the sediment continuity equation. The aforementioned steps are repeated until the equilibrium bed surface (i.e. the equilibrium scour hole) is reached. The results of the numerical simulation appear to compare favourably with experiment.</abstract><cop>Delft</cop><pub>Taylor &amp; Francis Group</pub><doi>10.1080/00221680309499998</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-1686
ispartof Journal of hydraulic research, 2003-01, Vol.41 (5), p.533-539
issn 0022-1686
1814-2079
language eng
recordid cdi_pascalfrancis_primary_15176300
source Taylor & Francis Journals Complete
subjects Earth sciences
Earth, ocean, space
Engineering and environment geology. Geothermics
Engineering geology
Exact sciences and technology
Free falling jet
Hydrology
Hydrology. Hydrogeology
numerical simulation
scour
turbulent flow
title Numerical simulation of scour by a free falling jet
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T20%3A42%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20simulation%20of%20scour%20by%20a%20free%20falling%20jet&rft.jtitle=Journal%20of%20hydraulic%20research&rft.au=Neyshabouri,%20A.A.%20Salehi&rft.date=2003-01-01&rft.volume=41&rft.issue=5&rft.spage=533&rft.epage=539&rft.pages=533-539&rft.issn=0022-1686&rft.eissn=1814-2079&rft.coden=JHYRAF&rft_id=info:doi/10.1080/00221680309499998&rft_dat=%3Cproquest_pasca%3E27882089%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27882089&rft_id=info:pmid/&rfr_iscdi=true