Quinclorac Efficacy as Affected by Adjuvants and Spray Carrier Water
Laboratory and greenhouse experiments were conducted to determine quinclorac efficacy as influenced by surfactants, methylated seed oil (MSO), basic pH compounds, and salts in the spray carrier water. Quinclorac efficacy for green foxtail control generally increased with an increase in linear alcoho...
Gespeichert in:
Veröffentlicht in: | Weed technology 2003-07, Vol.17 (3), p.582-588 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Laboratory and greenhouse experiments were conducted to determine quinclorac efficacy as influenced by surfactants, methylated seed oil (MSO), basic pH compounds, and salts in the spray carrier water. Quinclorac efficacy for green foxtail control generally increased with an increase in linear alcohol ethoxylate (LAE) surfactant carbon-chain length and percentage of ethoxylation. With LAE surfactants, quinclorac phytotoxicity to green foxtail was nearly doubled (average from 44 to 81%) when triethanolamine (TEA) was included in the spray mixture. Combination of LAE surfactants with TEA also enhanced quinclorac absorption. Enhancement of quinclorac absorption and phytotoxicity by LAE surfactants and TEA was related to spray deposits that had close contact with the cuticle and without apparent quinclorac crystals. Sodium and calcium ions strongly antagonized quinclorac efficacy when applied with a block copolymer surfactant or MSO. Ammonium sulfate or ammonium nitrate adjuvants were more effective than urea-ammonium nitrate liquid fertilizer in overcoming antagonism from salts in spray carrier waters. These results demonstrate the potential for maximizing quinclorac efficacy by careful selection of surfactants, nitrogen fertilizer, and basic pH additives. |
---|---|
ISSN: | 0890-037X 1550-2740 |
DOI: | 10.1614/0890-037X(2003)017[0582:QEAABA]2.0.CO;2 |