Direct observations of daytime NO3: Implications for urban boundary layer chemistry

The nitrate radical (NO3) is the dominant atmospheric oxidant during the night in most environments. During the day, however, NO3 has thus far been considered insignificant. Here we present daytime measurements of NO3 by Differential Optical Absorption Spectroscopy near Houston, Texas, during the Te...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Geophysical Research. D. (Atmospheres), 108(D12):4368 108(D12):4368, 2003-06, Vol.108 (D12), p.ACH7.1-n/a
Hauptverfasser: Geyer, A., Alicke, B., Ackermann, R., Martinez, M., Harder, H., Brune, W., di Carlo, Piero, Williams, E., Jobson, T., Hall, S., Shetter, R., Stutz, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue D12
container_start_page ACH7.1
container_title Journal of Geophysical Research. D. (Atmospheres), 108(D12):4368
container_volume 108
creator Geyer, A.
Alicke, B.
Ackermann, R.
Martinez, M.
Harder, H.
Brune, W.
di Carlo, Piero
Williams, E.
Jobson, T.
Hall, S.
Shetter, R.
Stutz, J.
description The nitrate radical (NO3) is the dominant atmospheric oxidant during the night in most environments. During the day, however, NO3 has thus far been considered insignificant. Here we present daytime measurements of NO3 by Differential Optical Absorption Spectroscopy near Houston, Texas, during the Texas Air Quality Study 2000. On 3 consecutive days in August/September 2000, NO3 reached levels from ∼5 ppt 3 hours before sunset to 31 ppt around sunset. Daytime NO3 had a negligible effect on the photostationary state (PSS) between O3 and NOx, with the exception of the last hour before sunset, when it significantly accelerated NO‐to‐NO2 conversion. On August 31, chemical reactions involving NO3 destroyed 8 (±4) ppb Ox (= O3 + NO2) during the day and 27 (±6) ppb at night. NO3 chemistry contributed 10 (±7)% to the total Ox loss during the daytime, and 28% (±18%) integrated over a 24‐hour period. It therefore played an important role in the Ox budget. NO3 also contributed significantly to the daytime oxidation of hydrocarbons such as monoterpenes and phenol in Houston. The observed daytime NO3 mixing ratios can be described as a function of O3 and NOx. Above [NOx]/[O3] ratios of 3%, daytime NO3 becomes independent of NOx and proportional to the square of O3. Our calculations indicate that elevated (>1 ppt) NO3 levels can be present whenever ozone mixing ratios exceed typical urban smog levels of 100 ppb.
doi_str_mv 10.1029/2002JD002967
format Article
fullrecord <record><control><sourceid>wiley_osti_</sourceid><recordid>TN_cdi_pascalfrancis_primary_15085190</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>JGRD10231</sourcerecordid><originalsourceid>FETCH-LOGICAL-i3971-804bb14e9b30a6ca3957b6dbf44f39ac84f485f248f4052e3582e86ed3ce6d753</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWGpv_oCAeFzN9-56k9bWltJC_TqGbDah0e1uSbbq_ntTWtQ5zMDM8w7zDgCXGN1gRPJbghCZjWLKRXoCegRzkRCCyCnoIcyyBBGSnoNBCO8oBuOCIdwDTyPnjW5hUwTjP1XrmjrAxsJSda3bGLhY0js43Wwrp49D23i484WqYdHs6lL5DlaqMx7qtdm40PruApxZVQUzONY-eBk_PA8fk_lyMh3ezxNH8xQnGWJFgZnJC4qU0IrmPC1EWVjGLM2VzphlGbeEZZYhTgzlGTGZMCXVRpQpp31wddjbhNbJoF1r9Fo3dR0NScwRjioUqesDtVVBq8p6VWsX5Na7Tbx9z2Uc53uOHrgvV5nub47k_r3y_3vlbLIaxS7FUZUcVNG5-f5VKf8hRUpTLt8WE8mxWC1e87FE9Afmz3yB</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Direct observations of daytime NO3: Implications for urban boundary layer chemistry</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><source>Alma/SFX Local Collection</source><creator>Geyer, A. ; Alicke, B. ; Ackermann, R. ; Martinez, M. ; Harder, H. ; Brune, W. ; di Carlo, Piero ; Williams, E. ; Jobson, T. ; Hall, S. ; Shetter, R. ; Stutz, J.</creator><creatorcontrib>Geyer, A. ; Alicke, B. ; Ackermann, R. ; Martinez, M. ; Harder, H. ; Brune, W. ; di Carlo, Piero ; Williams, E. ; Jobson, T. ; Hall, S. ; Shetter, R. ; Stutz, J. ; Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><description>The nitrate radical (NO3) is the dominant atmospheric oxidant during the night in most environments. During the day, however, NO3 has thus far been considered insignificant. Here we present daytime measurements of NO3 by Differential Optical Absorption Spectroscopy near Houston, Texas, during the Texas Air Quality Study 2000. On 3 consecutive days in August/September 2000, NO3 reached levels from ∼5 ppt 3 hours before sunset to 31 ppt around sunset. Daytime NO3 had a negligible effect on the photostationary state (PSS) between O3 and NOx, with the exception of the last hour before sunset, when it significantly accelerated NO‐to‐NO2 conversion. On August 31, chemical reactions involving NO3 destroyed 8 (±4) ppb Ox (= O3 + NO2) during the day and 27 (±6) ppb at night. NO3 chemistry contributed 10 (±7)% to the total Ox loss during the daytime, and 28% (±18%) integrated over a 24‐hour period. It therefore played an important role in the Ox budget. NO3 also contributed significantly to the daytime oxidation of hydrocarbons such as monoterpenes and phenol in Houston. The observed daytime NO3 mixing ratios can be described as a function of O3 and NOx. Above [NOx]/[O3] ratios of 3%, daytime NO3 becomes independent of NOx and proportional to the square of O3. Our calculations indicate that elevated (&gt;1 ppt) NO3 levels can be present whenever ozone mixing ratios exceed typical urban smog levels of 100 ppb.</description><identifier>ISSN: 0148-0227</identifier><identifier>EISSN: 2156-2202</identifier><identifier>DOI: 10.1029/2002JD002967</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>Applied sciences ; Atmospheric pollution ; Chemical composition and interactions. Ionic interactions and processes ; Earth, ocean, space ; Exact sciences and technology ; External geophysics ; Meteorology ; nitrate radical ; NOx loss ; oxidation capacity ; ozone production ; photochemistry ; photochemistry, nitrate radical, oxidation capacity, NOx loss, ozone production, photosmog ; photosmog ; Pollutants physicochemistry study: properties, effects, reactions, transport and distribution ; Pollution</subject><ispartof>Journal of Geophysical Research. D. (Atmospheres), 108(D12):4368, 2003-06, Vol.108 (D12), p.ACH7.1-n/a</ispartof><rights>Copyright 2003 by the American Geophysical Union.</rights><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2002JD002967$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2002JD002967$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,882,1412,1428,11495,27905,27906,45555,45556,46390,46449,46814,46873</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15085190$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/15010520$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Geyer, A.</creatorcontrib><creatorcontrib>Alicke, B.</creatorcontrib><creatorcontrib>Ackermann, R.</creatorcontrib><creatorcontrib>Martinez, M.</creatorcontrib><creatorcontrib>Harder, H.</creatorcontrib><creatorcontrib>Brune, W.</creatorcontrib><creatorcontrib>di Carlo, Piero</creatorcontrib><creatorcontrib>Williams, E.</creatorcontrib><creatorcontrib>Jobson, T.</creatorcontrib><creatorcontrib>Hall, S.</creatorcontrib><creatorcontrib>Shetter, R.</creatorcontrib><creatorcontrib>Stutz, J.</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><title>Direct observations of daytime NO3: Implications for urban boundary layer chemistry</title><title>Journal of Geophysical Research. D. (Atmospheres), 108(D12):4368</title><addtitle>J. Geophys. Res</addtitle><description>The nitrate radical (NO3) is the dominant atmospheric oxidant during the night in most environments. During the day, however, NO3 has thus far been considered insignificant. Here we present daytime measurements of NO3 by Differential Optical Absorption Spectroscopy near Houston, Texas, during the Texas Air Quality Study 2000. On 3 consecutive days in August/September 2000, NO3 reached levels from ∼5 ppt 3 hours before sunset to 31 ppt around sunset. Daytime NO3 had a negligible effect on the photostationary state (PSS) between O3 and NOx, with the exception of the last hour before sunset, when it significantly accelerated NO‐to‐NO2 conversion. On August 31, chemical reactions involving NO3 destroyed 8 (±4) ppb Ox (= O3 + NO2) during the day and 27 (±6) ppb at night. NO3 chemistry contributed 10 (±7)% to the total Ox loss during the daytime, and 28% (±18%) integrated over a 24‐hour period. It therefore played an important role in the Ox budget. NO3 also contributed significantly to the daytime oxidation of hydrocarbons such as monoterpenes and phenol in Houston. The observed daytime NO3 mixing ratios can be described as a function of O3 and NOx. Above [NOx]/[O3] ratios of 3%, daytime NO3 becomes independent of NOx and proportional to the square of O3. Our calculations indicate that elevated (&gt;1 ppt) NO3 levels can be present whenever ozone mixing ratios exceed typical urban smog levels of 100 ppb.</description><subject>Applied sciences</subject><subject>Atmospheric pollution</subject><subject>Chemical composition and interactions. Ionic interactions and processes</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Meteorology</subject><subject>nitrate radical</subject><subject>NOx loss</subject><subject>oxidation capacity</subject><subject>ozone production</subject><subject>photochemistry</subject><subject>photochemistry, nitrate radical, oxidation capacity, NOx loss, ozone production, photosmog</subject><subject>photosmog</subject><subject>Pollutants physicochemistry study: properties, effects, reactions, transport and distribution</subject><subject>Pollution</subject><issn>0148-0227</issn><issn>2156-2202</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNpNkE1LAzEQhoMoWGpv_oCAeFzN9-56k9bWltJC_TqGbDah0e1uSbbq_ntTWtQ5zMDM8w7zDgCXGN1gRPJbghCZjWLKRXoCegRzkRCCyCnoIcyyBBGSnoNBCO8oBuOCIdwDTyPnjW5hUwTjP1XrmjrAxsJSda3bGLhY0js43Wwrp49D23i484WqYdHs6lL5DlaqMx7qtdm40PruApxZVQUzONY-eBk_PA8fk_lyMh3ezxNH8xQnGWJFgZnJC4qU0IrmPC1EWVjGLM2VzphlGbeEZZYhTgzlGTGZMCXVRpQpp31wddjbhNbJoF1r9Fo3dR0NScwRjioUqesDtVVBq8p6VWsX5Na7Tbx9z2Uc53uOHrgvV5nub47k_r3y_3vlbLIaxS7FUZUcVNG5-f5VKf8hRUpTLt8WE8mxWC1e87FE9Afmz3yB</recordid><startdate>20030627</startdate><enddate>20030627</enddate><creator>Geyer, A.</creator><creator>Alicke, B.</creator><creator>Ackermann, R.</creator><creator>Martinez, M.</creator><creator>Harder, H.</creator><creator>Brune, W.</creator><creator>di Carlo, Piero</creator><creator>Williams, E.</creator><creator>Jobson, T.</creator><creator>Hall, S.</creator><creator>Shetter, R.</creator><creator>Stutz, J.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>IQODW</scope><scope>OTOTI</scope></search><sort><creationdate>20030627</creationdate><title>Direct observations of daytime NO3: Implications for urban boundary layer chemistry</title><author>Geyer, A. ; Alicke, B. ; Ackermann, R. ; Martinez, M. ; Harder, H. ; Brune, W. ; di Carlo, Piero ; Williams, E. ; Jobson, T. ; Hall, S. ; Shetter, R. ; Stutz, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i3971-804bb14e9b30a6ca3957b6dbf44f39ac84f485f248f4052e3582e86ed3ce6d753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Applied sciences</topic><topic>Atmospheric pollution</topic><topic>Chemical composition and interactions. Ionic interactions and processes</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Meteorology</topic><topic>nitrate radical</topic><topic>NOx loss</topic><topic>oxidation capacity</topic><topic>ozone production</topic><topic>photochemistry</topic><topic>photochemistry, nitrate radical, oxidation capacity, NOx loss, ozone production, photosmog</topic><topic>photosmog</topic><topic>Pollutants physicochemistry study: properties, effects, reactions, transport and distribution</topic><topic>Pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Geyer, A.</creatorcontrib><creatorcontrib>Alicke, B.</creatorcontrib><creatorcontrib>Ackermann, R.</creatorcontrib><creatorcontrib>Martinez, M.</creatorcontrib><creatorcontrib>Harder, H.</creatorcontrib><creatorcontrib>Brune, W.</creatorcontrib><creatorcontrib>di Carlo, Piero</creatorcontrib><creatorcontrib>Williams, E.</creatorcontrib><creatorcontrib>Jobson, T.</creatorcontrib><creatorcontrib>Hall, S.</creatorcontrib><creatorcontrib>Shetter, R.</creatorcontrib><creatorcontrib>Stutz, J.</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>OSTI.GOV</collection><jtitle>Journal of Geophysical Research. D. (Atmospheres), 108(D12):4368</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Geyer, A.</au><au>Alicke, B.</au><au>Ackermann, R.</au><au>Martinez, M.</au><au>Harder, H.</au><au>Brune, W.</au><au>di Carlo, Piero</au><au>Williams, E.</au><au>Jobson, T.</au><au>Hall, S.</au><au>Shetter, R.</au><au>Stutz, J.</au><aucorp>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct observations of daytime NO3: Implications for urban boundary layer chemistry</atitle><jtitle>Journal of Geophysical Research. D. (Atmospheres), 108(D12):4368</jtitle><addtitle>J. Geophys. Res</addtitle><date>2003-06-27</date><risdate>2003</risdate><volume>108</volume><issue>D12</issue><spage>ACH7.1</spage><epage>n/a</epage><pages>ACH7.1-n/a</pages><issn>0148-0227</issn><eissn>2156-2202</eissn><abstract>The nitrate radical (NO3) is the dominant atmospheric oxidant during the night in most environments. During the day, however, NO3 has thus far been considered insignificant. Here we present daytime measurements of NO3 by Differential Optical Absorption Spectroscopy near Houston, Texas, during the Texas Air Quality Study 2000. On 3 consecutive days in August/September 2000, NO3 reached levels from ∼5 ppt 3 hours before sunset to 31 ppt around sunset. Daytime NO3 had a negligible effect on the photostationary state (PSS) between O3 and NOx, with the exception of the last hour before sunset, when it significantly accelerated NO‐to‐NO2 conversion. On August 31, chemical reactions involving NO3 destroyed 8 (±4) ppb Ox (= O3 + NO2) during the day and 27 (±6) ppb at night. NO3 chemistry contributed 10 (±7)% to the total Ox loss during the daytime, and 28% (±18%) integrated over a 24‐hour period. It therefore played an important role in the Ox budget. NO3 also contributed significantly to the daytime oxidation of hydrocarbons such as monoterpenes and phenol in Houston. The observed daytime NO3 mixing ratios can be described as a function of O3 and NOx. Above [NOx]/[O3] ratios of 3%, daytime NO3 becomes independent of NOx and proportional to the square of O3. Our calculations indicate that elevated (&gt;1 ppt) NO3 levels can be present whenever ozone mixing ratios exceed typical urban smog levels of 100 ppb.</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2002JD002967</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0148-0227
ispartof Journal of Geophysical Research. D. (Atmospheres), 108(D12):4368, 2003-06, Vol.108 (D12), p.ACH7.1-n/a
issn 0148-0227
2156-2202
language eng
recordid cdi_pascalfrancis_primary_15085190
source Wiley Online Library Journals Frontfile Complete; Wiley Free Content; Wiley-Blackwell AGU Digital Library; Alma/SFX Local Collection
subjects Applied sciences
Atmospheric pollution
Chemical composition and interactions. Ionic interactions and processes
Earth, ocean, space
Exact sciences and technology
External geophysics
Meteorology
nitrate radical
NOx loss
oxidation capacity
ozone production
photochemistry
photochemistry, nitrate radical, oxidation capacity, NOx loss, ozone production, photosmog
photosmog
Pollutants physicochemistry study: properties, effects, reactions, transport and distribution
Pollution
title Direct observations of daytime NO3: Implications for urban boundary layer chemistry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T14%3A14%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20observations%20of%20daytime%20NO3:%20Implications%20for%20urban%20boundary%20layer%20chemistry&rft.jtitle=Journal%20of%20Geophysical%20Research.%20D.%20(Atmospheres),%20108(D12):4368&rft.au=Geyer,%20A.&rft.aucorp=Pacific%20Northwest%20National%20Lab.%20(PNNL),%20Richland,%20WA%20(United%20States)&rft.date=2003-06-27&rft.volume=108&rft.issue=D12&rft.spage=ACH7.1&rft.epage=n/a&rft.pages=ACH7.1-n/a&rft.issn=0148-0227&rft.eissn=2156-2202&rft_id=info:doi/10.1029/2002JD002967&rft_dat=%3Cwiley_osti_%3EJGRD10231%3C/wiley_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true