Prior exercise enhances passive absorption of intraduodenal glucose

Department of Molecular Physiology and Biophysics, Diabetes Research and Training Center, and Department of Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0615 Submitted 20 December 2002 ; accepted in final form 5 May 2003 The purpose of this study was to assess whethe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physiology (1985) 2003-09, Vol.95 (3), p.1132-1138
Hauptverfasser: Pencek, R. Richard, Koyama, Yoshiharu, Lacy, D. Brooks, James, Freyja D, Fueger, Patrick T, Jabbour, Kareem, Williams, Phillip E, Wasserman, David H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1138
container_issue 3
container_start_page 1132
container_title Journal of applied physiology (1985)
container_volume 95
creator Pencek, R. Richard
Koyama, Yoshiharu
Lacy, D. Brooks
James, Freyja D
Fueger, Patrick T
Jabbour, Kareem
Williams, Phillip E
Wasserman, David H
description Department of Molecular Physiology and Biophysics, Diabetes Research and Training Center, and Department of Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0615 Submitted 20 December 2002 ; accepted in final form 5 May 2003 The purpose of this study was to assess whether a prior bout of exercise enhances passive gut glucose absorption. Mongrel dogs had sampling catheters, infusion catheters, and a portal vein flow probe implanted 17 days before an experiment. Protocols consisted of either 150 min of exercise ( n = 8) or rest ( n = 7) followed by basal (-30 to 0 min) and a primed (150 mg/kg) intraduodenal glucose infusion [8.0 mg · kg - 1 · min - 1 , time ( t ) = 0-90 min] periods. 3- O -[ 3 H]methylglucose (absorbed actively, facilitatively, and passively) and L -[ 14 C]glucose (absorbed passively) were injected into the duodenum at t = 20 and 80 min. Phloridzin, an inhibitor of the active sodium glucose cotransporter-1 (SGLT-1), was infused (0.1 mg · kg - 1 · min - 1 ) into the duodenum from t = 60-90 min with a peripheral venous isoglycemic clamp. Duodenal, arterial, and portal vein samples were taken every 10 min during the glucose infusion, as well as every minute after each tracer bolus injection. Net gut glucose output in exercised dogs increased compared with that in the sedentary group (5.34 ± 0.47 and 4.02 ± 0.53 mg · kg - 1 · min - 1 ). Passive gut glucose absorption increased 100% after exercise (0.93 ± 0.06 and 0.45 ± 0.07 mg · kg - 1 · min - 1 ). Transport-mediated glucose absorption increased by 20%, but the change was not significant. The infusion of phloridzin eliminated the appearance of both glucose tracers in sedentary and exercised dogs, suggesting that passive transport required SGLT-1-mediated glucose uptake. This study shows 1 ) that prior exercise enhances passive absorption of intraduodenal glucose into the portal vein and 2 ) that basal and the added passive gut glucose absorption after exercise is dependent on initial transport of glucose via SGLT-1. dogs; phloridzin; splanchnic blood flow Address for reprint requests and other correspondence: R. R. Pencek, Dept. of Molecular Physiology and Biophysics, Vanderbilt Univ. School of Medicine, Nashville, TN 37232-0615 (E-mail: r.r.pencek{at}vanderbilt.edu ).
doi_str_mv 10.1152/japplphysiol.01172.2002
format Article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_15067729</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>698050571</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-1e1c5ccba5bc108f9f05621b72ccab76e320fbf0e97e34410aa6e948eeec74753</originalsourceid><addsrcrecordid>eNqFkUGP0zAQhS0EYrsLfwEiJFZcUjx2bCdHVLGAtBIclrPluJPWlRsHO4Htv8ehEYuQEL744O-9N55HyEugawDB3h7MMPhhf0ou-DUFUGzNKGWPyCq_shIkhcdkVStBSyVqdUEuUzpQClUl4Cm5AKYqykGsyOZLdCEWeI_RuoQF9nvTW0zFYFJy37EwbQpxGF3oi9AVrh-j2U5hi73xxc5PNiR8Rp50xid8vtxX5OvN-7vNx_L284dPm3e3pa2UGEtAsMLa1ojWAq27pqNCMmgVs9a0SiJntGs7io1CXlVAjZHYVDUiWpUd-BW5PvsOMXybMI366JJF702PYUpaccGlrOV_QWigllVdZ_DVX-AhTDF_LWmWD5UcZjd1hmwMKUXs9BDd0cSTBqrnNvSfbehfbei5jax8sdhP7RG3D7pl_Rl4vQAmWeO7mHfv0gMnqFSKNZl7c-b2brf_4SLqJS3sTnO6boTmeRY-Z1b_Rm8m7-_wfpw1vyV62Hb8J8D3uDc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>222206316</pqid></control><display><type>article</type><title>Prior exercise enhances passive absorption of intraduodenal glucose</title><source>MEDLINE</source><source>American Physiological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Pencek, R. Richard ; Koyama, Yoshiharu ; Lacy, D. Brooks ; James, Freyja D ; Fueger, Patrick T ; Jabbour, Kareem ; Williams, Phillip E ; Wasserman, David H</creator><creatorcontrib>Pencek, R. Richard ; Koyama, Yoshiharu ; Lacy, D. Brooks ; James, Freyja D ; Fueger, Patrick T ; Jabbour, Kareem ; Williams, Phillip E ; Wasserman, David H</creatorcontrib><description>Department of Molecular Physiology and Biophysics, Diabetes Research and Training Center, and Department of Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0615 Submitted 20 December 2002 ; accepted in final form 5 May 2003 The purpose of this study was to assess whether a prior bout of exercise enhances passive gut glucose absorption. Mongrel dogs had sampling catheters, infusion catheters, and a portal vein flow probe implanted 17 days before an experiment. Protocols consisted of either 150 min of exercise ( n = 8) or rest ( n = 7) followed by basal (-30 to 0 min) and a primed (150 mg/kg) intraduodenal glucose infusion [8.0 mg · kg - 1 · min - 1 , time ( t ) = 0-90 min] periods. 3- O -[ 3 H]methylglucose (absorbed actively, facilitatively, and passively) and L -[ 14 C]glucose (absorbed passively) were injected into the duodenum at t = 20 and 80 min. Phloridzin, an inhibitor of the active sodium glucose cotransporter-1 (SGLT-1), was infused (0.1 mg · kg - 1 · min - 1 ) into the duodenum from t = 60-90 min with a peripheral venous isoglycemic clamp. Duodenal, arterial, and portal vein samples were taken every 10 min during the glucose infusion, as well as every minute after each tracer bolus injection. Net gut glucose output in exercised dogs increased compared with that in the sedentary group (5.34 ± 0.47 and 4.02 ± 0.53 mg · kg - 1 · min - 1 ). Passive gut glucose absorption increased 100% after exercise (0.93 ± 0.06 and 0.45 ± 0.07 mg · kg - 1 · min - 1 ). Transport-mediated glucose absorption increased by 20%, but the change was not significant. The infusion of phloridzin eliminated the appearance of both glucose tracers in sedentary and exercised dogs, suggesting that passive transport required SGLT-1-mediated glucose uptake. This study shows 1 ) that prior exercise enhances passive absorption of intraduodenal glucose into the portal vein and 2 ) that basal and the added passive gut glucose absorption after exercise is dependent on initial transport of glucose via SGLT-1. dogs; phloridzin; splanchnic blood flow Address for reprint requests and other correspondence: R. R. Pencek, Dept. of Molecular Physiology and Biophysics, Vanderbilt Univ. School of Medicine, Nashville, TN 37232-0615 (E-mail: r.r.pencek{at}vanderbilt.edu ).</description><identifier>ISSN: 8750-7587</identifier><identifier>EISSN: 1522-1601</identifier><identifier>DOI: 10.1152/japplphysiol.01172.2002</identifier><identifier>PMID: 12740315</identifier><identifier>CODEN: JAPHEV</identifier><language>eng</language><publisher>Bethesda, MD: Am Physiological Soc</publisher><subject>3-O-Methylglucose - metabolism ; Algorithms ; Animals ; Biological and medical sciences ; Biological Transport, Active - drug effects ; Biological Transport, Active - physiology ; Blood Glucose - metabolism ; Blood vessels ; Circulatory system ; Dogs ; Duodenum - drug effects ; Duodenum - metabolism ; Exercise ; Female ; Fundamental and applied biological sciences. Psychology ; Glucose ; Glucose - administration &amp; dosage ; Glucose - pharmacokinetics ; Insulin - blood ; Intestinal Absorption - drug effects ; Intestinal Absorption - physiology ; Intestine. Mesentery ; Intubation, Intratracheal ; Male ; Membrane Glycoproteins - antagonists &amp; inhibitors ; Membrane Glycoproteins - metabolism ; Monosaccharide Transport Proteins - antagonists &amp; inhibitors ; Monosaccharide Transport Proteins - metabolism ; Phlorhizin - pharmacology ; Physical Exertion - physiology ; Sodium-Glucose Transporter 1 ; Vertebrates: digestive system</subject><ispartof>Journal of applied physiology (1985), 2003-09, Vol.95 (3), p.1132-1138</ispartof><rights>2004 INIST-CNRS</rights><rights>Copyright American Physiological Society Sep 2003</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-1e1c5ccba5bc108f9f05621b72ccab76e320fbf0e97e34410aa6e948eeec74753</citedby><cites>FETCH-LOGICAL-c475t-1e1c5ccba5bc108f9f05621b72ccab76e320fbf0e97e34410aa6e948eeec74753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,3040,27926,27927</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15067729$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12740315$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pencek, R. Richard</creatorcontrib><creatorcontrib>Koyama, Yoshiharu</creatorcontrib><creatorcontrib>Lacy, D. Brooks</creatorcontrib><creatorcontrib>James, Freyja D</creatorcontrib><creatorcontrib>Fueger, Patrick T</creatorcontrib><creatorcontrib>Jabbour, Kareem</creatorcontrib><creatorcontrib>Williams, Phillip E</creatorcontrib><creatorcontrib>Wasserman, David H</creatorcontrib><title>Prior exercise enhances passive absorption of intraduodenal glucose</title><title>Journal of applied physiology (1985)</title><addtitle>J Appl Physiol (1985)</addtitle><description>Department of Molecular Physiology and Biophysics, Diabetes Research and Training Center, and Department of Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0615 Submitted 20 December 2002 ; accepted in final form 5 May 2003 The purpose of this study was to assess whether a prior bout of exercise enhances passive gut glucose absorption. Mongrel dogs had sampling catheters, infusion catheters, and a portal vein flow probe implanted 17 days before an experiment. Protocols consisted of either 150 min of exercise ( n = 8) or rest ( n = 7) followed by basal (-30 to 0 min) and a primed (150 mg/kg) intraduodenal glucose infusion [8.0 mg · kg - 1 · min - 1 , time ( t ) = 0-90 min] periods. 3- O -[ 3 H]methylglucose (absorbed actively, facilitatively, and passively) and L -[ 14 C]glucose (absorbed passively) were injected into the duodenum at t = 20 and 80 min. Phloridzin, an inhibitor of the active sodium glucose cotransporter-1 (SGLT-1), was infused (0.1 mg · kg - 1 · min - 1 ) into the duodenum from t = 60-90 min with a peripheral venous isoglycemic clamp. Duodenal, arterial, and portal vein samples were taken every 10 min during the glucose infusion, as well as every minute after each tracer bolus injection. Net gut glucose output in exercised dogs increased compared with that in the sedentary group (5.34 ± 0.47 and 4.02 ± 0.53 mg · kg - 1 · min - 1 ). Passive gut glucose absorption increased 100% after exercise (0.93 ± 0.06 and 0.45 ± 0.07 mg · kg - 1 · min - 1 ). Transport-mediated glucose absorption increased by 20%, but the change was not significant. The infusion of phloridzin eliminated the appearance of both glucose tracers in sedentary and exercised dogs, suggesting that passive transport required SGLT-1-mediated glucose uptake. This study shows 1 ) that prior exercise enhances passive absorption of intraduodenal glucose into the portal vein and 2 ) that basal and the added passive gut glucose absorption after exercise is dependent on initial transport of glucose via SGLT-1. dogs; phloridzin; splanchnic blood flow Address for reprint requests and other correspondence: R. R. Pencek, Dept. of Molecular Physiology and Biophysics, Vanderbilt Univ. School of Medicine, Nashville, TN 37232-0615 (E-mail: r.r.pencek{at}vanderbilt.edu ).</description><subject>3-O-Methylglucose - metabolism</subject><subject>Algorithms</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Biological Transport, Active - drug effects</subject><subject>Biological Transport, Active - physiology</subject><subject>Blood Glucose - metabolism</subject><subject>Blood vessels</subject><subject>Circulatory system</subject><subject>Dogs</subject><subject>Duodenum - drug effects</subject><subject>Duodenum - metabolism</subject><subject>Exercise</subject><subject>Female</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Glucose</subject><subject>Glucose - administration &amp; dosage</subject><subject>Glucose - pharmacokinetics</subject><subject>Insulin - blood</subject><subject>Intestinal Absorption - drug effects</subject><subject>Intestinal Absorption - physiology</subject><subject>Intestine. Mesentery</subject><subject>Intubation, Intratracheal</subject><subject>Male</subject><subject>Membrane Glycoproteins - antagonists &amp; inhibitors</subject><subject>Membrane Glycoproteins - metabolism</subject><subject>Monosaccharide Transport Proteins - antagonists &amp; inhibitors</subject><subject>Monosaccharide Transport Proteins - metabolism</subject><subject>Phlorhizin - pharmacology</subject><subject>Physical Exertion - physiology</subject><subject>Sodium-Glucose Transporter 1</subject><subject>Vertebrates: digestive system</subject><issn>8750-7587</issn><issn>1522-1601</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUGP0zAQhS0EYrsLfwEiJFZcUjx2bCdHVLGAtBIclrPluJPWlRsHO4Htv8ehEYuQEL744O-9N55HyEugawDB3h7MMPhhf0ou-DUFUGzNKGWPyCq_shIkhcdkVStBSyVqdUEuUzpQClUl4Cm5AKYqykGsyOZLdCEWeI_RuoQF9nvTW0zFYFJy37EwbQpxGF3oi9AVrh-j2U5hi73xxc5PNiR8Rp50xid8vtxX5OvN-7vNx_L284dPm3e3pa2UGEtAsMLa1ojWAq27pqNCMmgVs9a0SiJntGs7io1CXlVAjZHYVDUiWpUd-BW5PvsOMXybMI366JJF702PYUpaccGlrOV_QWigllVdZ_DVX-AhTDF_LWmWD5UcZjd1hmwMKUXs9BDd0cSTBqrnNvSfbehfbei5jax8sdhP7RG3D7pl_Rl4vQAmWeO7mHfv0gMnqFSKNZl7c-b2brf_4SLqJS3sTnO6boTmeRY-Z1b_Rm8m7-_wfpw1vyV62Hb8J8D3uDc</recordid><startdate>20030901</startdate><enddate>20030901</enddate><creator>Pencek, R. Richard</creator><creator>Koyama, Yoshiharu</creator><creator>Lacy, D. Brooks</creator><creator>James, Freyja D</creator><creator>Fueger, Patrick T</creator><creator>Jabbour, Kareem</creator><creator>Williams, Phillip E</creator><creator>Wasserman, David H</creator><general>Am Physiological Soc</general><general>American Physiological Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TS</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20030901</creationdate><title>Prior exercise enhances passive absorption of intraduodenal glucose</title><author>Pencek, R. Richard ; Koyama, Yoshiharu ; Lacy, D. Brooks ; James, Freyja D ; Fueger, Patrick T ; Jabbour, Kareem ; Williams, Phillip E ; Wasserman, David H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-1e1c5ccba5bc108f9f05621b72ccab76e320fbf0e97e34410aa6e948eeec74753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>3-O-Methylglucose - metabolism</topic><topic>Algorithms</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Biological Transport, Active - drug effects</topic><topic>Biological Transport, Active - physiology</topic><topic>Blood Glucose - metabolism</topic><topic>Blood vessels</topic><topic>Circulatory system</topic><topic>Dogs</topic><topic>Duodenum - drug effects</topic><topic>Duodenum - metabolism</topic><topic>Exercise</topic><topic>Female</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Glucose</topic><topic>Glucose - administration &amp; dosage</topic><topic>Glucose - pharmacokinetics</topic><topic>Insulin - blood</topic><topic>Intestinal Absorption - drug effects</topic><topic>Intestinal Absorption - physiology</topic><topic>Intestine. Mesentery</topic><topic>Intubation, Intratracheal</topic><topic>Male</topic><topic>Membrane Glycoproteins - antagonists &amp; inhibitors</topic><topic>Membrane Glycoproteins - metabolism</topic><topic>Monosaccharide Transport Proteins - antagonists &amp; inhibitors</topic><topic>Monosaccharide Transport Proteins - metabolism</topic><topic>Phlorhizin - pharmacology</topic><topic>Physical Exertion - physiology</topic><topic>Sodium-Glucose Transporter 1</topic><topic>Vertebrates: digestive system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pencek, R. Richard</creatorcontrib><creatorcontrib>Koyama, Yoshiharu</creatorcontrib><creatorcontrib>Lacy, D. Brooks</creatorcontrib><creatorcontrib>James, Freyja D</creatorcontrib><creatorcontrib>Fueger, Patrick T</creatorcontrib><creatorcontrib>Jabbour, Kareem</creatorcontrib><creatorcontrib>Williams, Phillip E</creatorcontrib><creatorcontrib>Wasserman, David H</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Physical Education Index</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of applied physiology (1985)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pencek, R. Richard</au><au>Koyama, Yoshiharu</au><au>Lacy, D. Brooks</au><au>James, Freyja D</au><au>Fueger, Patrick T</au><au>Jabbour, Kareem</au><au>Williams, Phillip E</au><au>Wasserman, David H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prior exercise enhances passive absorption of intraduodenal glucose</atitle><jtitle>Journal of applied physiology (1985)</jtitle><addtitle>J Appl Physiol (1985)</addtitle><date>2003-09-01</date><risdate>2003</risdate><volume>95</volume><issue>3</issue><spage>1132</spage><epage>1138</epage><pages>1132-1138</pages><issn>8750-7587</issn><eissn>1522-1601</eissn><coden>JAPHEV</coden><abstract>Department of Molecular Physiology and Biophysics, Diabetes Research and Training Center, and Department of Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0615 Submitted 20 December 2002 ; accepted in final form 5 May 2003 The purpose of this study was to assess whether a prior bout of exercise enhances passive gut glucose absorption. Mongrel dogs had sampling catheters, infusion catheters, and a portal vein flow probe implanted 17 days before an experiment. Protocols consisted of either 150 min of exercise ( n = 8) or rest ( n = 7) followed by basal (-30 to 0 min) and a primed (150 mg/kg) intraduodenal glucose infusion [8.0 mg · kg - 1 · min - 1 , time ( t ) = 0-90 min] periods. 3- O -[ 3 H]methylglucose (absorbed actively, facilitatively, and passively) and L -[ 14 C]glucose (absorbed passively) were injected into the duodenum at t = 20 and 80 min. Phloridzin, an inhibitor of the active sodium glucose cotransporter-1 (SGLT-1), was infused (0.1 mg · kg - 1 · min - 1 ) into the duodenum from t = 60-90 min with a peripheral venous isoglycemic clamp. Duodenal, arterial, and portal vein samples were taken every 10 min during the glucose infusion, as well as every minute after each tracer bolus injection. Net gut glucose output in exercised dogs increased compared with that in the sedentary group (5.34 ± 0.47 and 4.02 ± 0.53 mg · kg - 1 · min - 1 ). Passive gut glucose absorption increased 100% after exercise (0.93 ± 0.06 and 0.45 ± 0.07 mg · kg - 1 · min - 1 ). Transport-mediated glucose absorption increased by 20%, but the change was not significant. The infusion of phloridzin eliminated the appearance of both glucose tracers in sedentary and exercised dogs, suggesting that passive transport required SGLT-1-mediated glucose uptake. This study shows 1 ) that prior exercise enhances passive absorption of intraduodenal glucose into the portal vein and 2 ) that basal and the added passive gut glucose absorption after exercise is dependent on initial transport of glucose via SGLT-1. dogs; phloridzin; splanchnic blood flow Address for reprint requests and other correspondence: R. R. Pencek, Dept. of Molecular Physiology and Biophysics, Vanderbilt Univ. School of Medicine, Nashville, TN 37232-0615 (E-mail: r.r.pencek{at}vanderbilt.edu ).</abstract><cop>Bethesda, MD</cop><pub>Am Physiological Soc</pub><pmid>12740315</pmid><doi>10.1152/japplphysiol.01172.2002</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 8750-7587
ispartof Journal of applied physiology (1985), 2003-09, Vol.95 (3), p.1132-1138
issn 8750-7587
1522-1601
language eng
recordid cdi_pascalfrancis_primary_15067729
source MEDLINE; American Physiological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects 3-O-Methylglucose - metabolism
Algorithms
Animals
Biological and medical sciences
Biological Transport, Active - drug effects
Biological Transport, Active - physiology
Blood Glucose - metabolism
Blood vessels
Circulatory system
Dogs
Duodenum - drug effects
Duodenum - metabolism
Exercise
Female
Fundamental and applied biological sciences. Psychology
Glucose
Glucose - administration & dosage
Glucose - pharmacokinetics
Insulin - blood
Intestinal Absorption - drug effects
Intestinal Absorption - physiology
Intestine. Mesentery
Intubation, Intratracheal
Male
Membrane Glycoproteins - antagonists & inhibitors
Membrane Glycoproteins - metabolism
Monosaccharide Transport Proteins - antagonists & inhibitors
Monosaccharide Transport Proteins - metabolism
Phlorhizin - pharmacology
Physical Exertion - physiology
Sodium-Glucose Transporter 1
Vertebrates: digestive system
title Prior exercise enhances passive absorption of intraduodenal glucose
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T09%3A43%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prior%20exercise%20enhances%20passive%20absorption%20of%20intraduodenal%20glucose&rft.jtitle=Journal%20of%20applied%20physiology%20(1985)&rft.au=Pencek,%20R.%20Richard&rft.date=2003-09-01&rft.volume=95&rft.issue=3&rft.spage=1132&rft.epage=1138&rft.pages=1132-1138&rft.issn=8750-7587&rft.eissn=1522-1601&rft.coden=JAPHEV&rft_id=info:doi/10.1152/japplphysiol.01172.2002&rft_dat=%3Cproquest_pasca%3E698050571%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=222206316&rft_id=info:pmid/12740315&rfr_iscdi=true