Application of Fuzzy Support Vector Machines in Short-Term Load Forecasting
A new method using Fuzzy Support Vector Machines (FSVM) is presented for Short-Term Load Forecasting (STLF). In many regression problems, the effects of the training points are different. It is often that some training points are more important than others. In FSVM, we apply a fuzzy membership to ea...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A new method using Fuzzy Support Vector Machines (FSVM) is presented for Short-Term Load Forecasting (STLF). In many regression problems, the effects of the training points are different. It is often that some training points are more important than others. In FSVM, we apply a fuzzy membership to each input point such that different input points can make different contributions to the learning of decision surface. The results of experiment indicate that FSVM is effective in improving the accuracy of STLF. |
---|---|
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/3-540-39205-X_58 |