Quasiperiodically forced interval maps with negative Schwarzian derivative

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinearity 2003-07, Vol.16 (4), p.1239-1255
1. Verfasser: J ger, Tobias H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1255
container_issue 4
container_start_page 1239
container_title Nonlinearity
container_volume 16
creator J ger, Tobias H
description
doi_str_mv 10.1088/0951-7715/16/4/303
format Article
fullrecord <record><control><sourceid>pascalfrancis_iop_p</sourceid><recordid>TN_cdi_pascalfrancis_primary_14927429</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>14927429</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-69765c1eaada8be775ae9eabea022eb1aeb6fe79b4aaa00e5e46247622f073183</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AU-5ePBQm6Rp0h5l8S8LIuo5TNOpG-m2Jam7rJ_erpX1sOBpYOb3HvMeIeecXXGWZTHLUx5pzdOYq1jGCUsOyIQnikcqlfKQTHbAMTkJ4YMxzjORTMjj8ycE16F3beks1PWGVq23WFLX9OhXUNMldIGuXb-gDb5D71ZIX-xiDf7LQUPLQbr62Z6SowrqgGe_c0rebm9eZ_fR_OnuYXY9j2widR-pXKvUcgQoIStQ6xQwRygQmBBYcMBCVajzQgIAY5iiVEJqJUTFdMKzZErE6Gt9G4LHynTeLcFvDGdm24bZhjXbsIYrI83QxiC6GEUdhCFm5aGxLvwpZS60FPnAXY6ca7vddd_PdGU1sNE--88P3-RWe8U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Quasiperiodically forced interval maps with negative Schwarzian derivative</title><source>Institute of Physics Journals</source><creator>J ger, Tobias H</creator><creatorcontrib>J ger, Tobias H</creatorcontrib><identifier>ISSN: 0951-7715</identifier><identifier>EISSN: 1361-6544</identifier><identifier>DOI: 10.1088/0951-7715/16/4/303</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Exact sciences and technology ; Global analysis, analysis on manifolds ; Mathematics ; Sciences and techniques of general use ; Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><ispartof>Nonlinearity, 2003-07, Vol.16 (4), p.1239-1255</ispartof><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-69765c1eaada8be775ae9eabea022eb1aeb6fe79b4aaa00e5e46247622f073183</citedby><cites>FETCH-LOGICAL-c347t-69765c1eaada8be775ae9eabea022eb1aeb6fe79b4aaa00e5e46247622f073183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0951-7715/16/4/303/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27922,27923,53828,53908</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14927429$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>J ger, Tobias H</creatorcontrib><title>Quasiperiodically forced interval maps with negative Schwarzian derivative</title><title>Nonlinearity</title><subject>Exact sciences and technology</subject><subject>Global analysis, analysis on manifolds</subject><subject>Mathematics</subject><subject>Sciences and techniques of general use</subject><subject>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><issn>0951-7715</issn><issn>1361-6544</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-AU-5ePBQm6Rp0h5l8S8LIuo5TNOpG-m2Jam7rJ_erpX1sOBpYOb3HvMeIeecXXGWZTHLUx5pzdOYq1jGCUsOyIQnikcqlfKQTHbAMTkJ4YMxzjORTMjj8ycE16F3beks1PWGVq23WFLX9OhXUNMldIGuXb-gDb5D71ZIX-xiDf7LQUPLQbr62Z6SowrqgGe_c0rebm9eZ_fR_OnuYXY9j2widR-pXKvUcgQoIStQ6xQwRygQmBBYcMBCVajzQgIAY5iiVEJqJUTFdMKzZErE6Gt9G4LHynTeLcFvDGdm24bZhjXbsIYrI83QxiC6GEUdhCFm5aGxLvwpZS60FPnAXY6ca7vddd_PdGU1sNE--88P3-RWe8U</recordid><startdate>20030701</startdate><enddate>20030701</enddate><creator>J ger, Tobias H</creator><general>IOP Publishing</general><general>Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20030701</creationdate><title>Quasiperiodically forced interval maps with negative Schwarzian derivative</title><author>J ger, Tobias H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-69765c1eaada8be775ae9eabea022eb1aeb6fe79b4aaa00e5e46247622f073183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Exact sciences and technology</topic><topic>Global analysis, analysis on manifolds</topic><topic>Mathematics</topic><topic>Sciences and techniques of general use</topic><topic>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>J ger, Tobias H</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Nonlinearity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>J ger, Tobias H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quasiperiodically forced interval maps with negative Schwarzian derivative</atitle><jtitle>Nonlinearity</jtitle><date>2003-07-01</date><risdate>2003</risdate><volume>16</volume><issue>4</issue><spage>1239</spage><epage>1255</epage><pages>1239-1255</pages><issn>0951-7715</issn><eissn>1361-6544</eissn><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/0951-7715/16/4/303</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0951-7715
ispartof Nonlinearity, 2003-07, Vol.16 (4), p.1239-1255
issn 0951-7715
1361-6544
language eng
recordid cdi_pascalfrancis_primary_14927429
source Institute of Physics Journals
subjects Exact sciences and technology
Global analysis, analysis on manifolds
Mathematics
Sciences and techniques of general use
Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds
title Quasiperiodically forced interval maps with negative Schwarzian derivative
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A55%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_iop_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quasiperiodically%20forced%20interval%20maps%20with%20negative%20Schwarzian%20derivative&rft.jtitle=Nonlinearity&rft.au=J%20ger,%20Tobias%20H&rft.date=2003-07-01&rft.volume=16&rft.issue=4&rft.spage=1239&rft.epage=1255&rft.pages=1239-1255&rft.issn=0951-7715&rft.eissn=1361-6544&rft_id=info:doi/10.1088/0951-7715/16/4/303&rft_dat=%3Cpascalfrancis_iop_p%3E14927429%3C/pascalfrancis_iop_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true