Guiding Single-Objective Optimization Using Multi-objective Methods

This paper investigates the possibility of using multi-objective methods to guide the search when solving single-objective optimization problems with genetic algorithms.Using the job shop scheduling problem as an example,experiments demonstrate that by using helper-objectives (additional objectives...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Jensen, Mikkel T.
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 279
container_issue
container_start_page 268
container_title
container_volume 2611
creator Jensen, Mikkel T.
description This paper investigates the possibility of using multi-objective methods to guide the search when solving single-objective optimization problems with genetic algorithms.Using the job shop scheduling problem as an example,experiments demonstrate that by using helper-objectives (additional objectives guiding the search),the average performance of a standard GA can be significantly improved.The helper-objectives guide the search towards solutions containing good building blocks and helps the algorithm avoid local optima.The experiments reveal that the approach only works if the number of helper-objectives used simultaneously is low.However,a high number of helper-objectives can be used in the same run by changing the helper-objectives dynamically.
doi_str_mv 10.1007/3-540-36605-9_25
format Book Chapter
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_14841233</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC3073002_32_286</sourcerecordid><originalsourceid>FETCH-LOGICAL-c315t-f95de66c751de793cfd93cf89c1b14a7f98a4c1aaec76a560ba492f8933b33713</originalsourceid><addsrcrecordid>eNo9kL1PwzAQxc2nKNCdsQuj4exL7HhEFV9Sqw7Q2XIcB1zSpMQuEvz1OKVieae793s3PEKuGNwwAHmLNM-AohCQU6V5fkDGShaYjrtbcUhGTDBGETN1RM4HA0BJAcdkBAicKpnhKRkpzLliiHBGxiGsEgTI085GZPq49ZVv3yYvSRpHF-XK2ei_3GSxiX7tf0z0XTtZhoGZb5voafePzF1876pwSU5q0wQ33s8Lsny4f50-0dni8Xl6N6MWWR5prfLKCWFlzionFdq6GqRQlpUsM7JWhcksM8ZZKUwuoDSZ4slHLBElwwty_fd3Y4I1Td2b1vqgN71fm_5bs6zIGEdM3M0fF5LVvrlel133ETQDPdSqUaei9K5CPdSaArh_3HefWxeidkPCujb2prHvZhNdHzSCRACukWteCPwFDmx1AA</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC3073002_32_286</pqid></control><display><type>book_chapter</type><title>Guiding Single-Objective Optimization Using Multi-objective Methods</title><source>Springer Books</source><creator>Jensen, Mikkel T.</creator><contributor>Cardalda, Juan J. Romero ; Corne, David W ; Meyer, Jean-Arcady ; Gottlieb, Jens ; Johnson, Colin G ; Guillot, Agnes ; Hart, Emma ; Raidl, Günther ; Marchiori, Elena ; Cagnoni, Stefano ; Middendorf, Martin ; Cardalda, Juan J. Romero ; Corne, David W. ; Meyer, Jean-Arcady ; Guillot, Agnès ; Johnson, Colin G. ; Marchiori, Elena ; Gottlieb, Jens ; Cagnoni, Stefano ; Raidl, Günther R. ; Hart, Emma</contributor><creatorcontrib>Jensen, Mikkel T. ; Cardalda, Juan J. Romero ; Corne, David W ; Meyer, Jean-Arcady ; Gottlieb, Jens ; Johnson, Colin G ; Guillot, Agnes ; Hart, Emma ; Raidl, Günther ; Marchiori, Elena ; Cagnoni, Stefano ; Middendorf, Martin ; Cardalda, Juan J. Romero ; Corne, David W. ; Meyer, Jean-Arcady ; Guillot, Agnès ; Johnson, Colin G. ; Marchiori, Elena ; Gottlieb, Jens ; Cagnoni, Stefano ; Raidl, Günther R. ; Hart, Emma</creatorcontrib><description>This paper investigates the possibility of using multi-objective methods to guide the search when solving single-objective optimization problems with genetic algorithms.Using the job shop scheduling problem as an example,experiments demonstrate that by using helper-objectives (additional objectives guiding the search),the average performance of a standard GA can be significantly improved.The helper-objectives guide the search towards solutions containing good building blocks and helps the algorithm avoid local optima.The experiments reveal that the approach only works if the number of helper-objectives used simultaneously is low.However,a high number of helper-objectives can be used in the same run by changing the helper-objectives dynamically.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540009760</identifier><identifier>ISBN: 9783540009764</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540366058</identifier><identifier>EISBN: 3540366059</identifier><identifier>DOI: 10.1007/3-540-36605-9_25</identifier><identifier>OCLC: 935291330</identifier><identifier>LCCallNum: QA75.5-76.95</identifier><language>eng</language><publisher>Germany: Springer Berlin / Heidelberg</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Computer science; control theory; systems ; Exact sciences and technology ; Good Building Block ; Multiobjective Optimization ; Operational research and scientific management ; Operational research. Management science ; Problem Instance ; Scheduling, sequencing ; Theoretical computing ; Traditional Algorithm ; Travelling Salesperson Problem</subject><ispartof>Applications of Evolutionary Computing, 2003, Vol.2611, p.268-279</ispartof><rights>Springer-Verlag Berlin Heidelberg 2003</rights><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c315t-f95de66c751de793cfd93cf89c1b14a7f98a4c1aaec76a560ba492f8933b33713</citedby><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/3073002-l.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/3-540-36605-9_25$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/3-540-36605-9_25$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4050,4051,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14841233$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Cardalda, Juan J. Romero</contributor><contributor>Corne, David W</contributor><contributor>Meyer, Jean-Arcady</contributor><contributor>Gottlieb, Jens</contributor><contributor>Johnson, Colin G</contributor><contributor>Guillot, Agnes</contributor><contributor>Hart, Emma</contributor><contributor>Raidl, Günther</contributor><contributor>Marchiori, Elena</contributor><contributor>Cagnoni, Stefano</contributor><contributor>Middendorf, Martin</contributor><contributor>Cardalda, Juan J. Romero</contributor><contributor>Corne, David W.</contributor><contributor>Meyer, Jean-Arcady</contributor><contributor>Guillot, Agnès</contributor><contributor>Johnson, Colin G.</contributor><contributor>Marchiori, Elena</contributor><contributor>Gottlieb, Jens</contributor><contributor>Cagnoni, Stefano</contributor><contributor>Raidl, Günther R.</contributor><contributor>Hart, Emma</contributor><creatorcontrib>Jensen, Mikkel T.</creatorcontrib><title>Guiding Single-Objective Optimization Using Multi-objective Methods</title><title>Applications of Evolutionary Computing</title><description>This paper investigates the possibility of using multi-objective methods to guide the search when solving single-objective optimization problems with genetic algorithms.Using the job shop scheduling problem as an example,experiments demonstrate that by using helper-objectives (additional objectives guiding the search),the average performance of a standard GA can be significantly improved.The helper-objectives guide the search towards solutions containing good building blocks and helps the algorithm avoid local optima.The experiments reveal that the approach only works if the number of helper-objectives used simultaneously is low.However,a high number of helper-objectives can be used in the same run by changing the helper-objectives dynamically.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Good Building Block</subject><subject>Multiobjective Optimization</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Problem Instance</subject><subject>Scheduling, sequencing</subject><subject>Theoretical computing</subject><subject>Traditional Algorithm</subject><subject>Travelling Salesperson Problem</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540009760</isbn><isbn>9783540009764</isbn><isbn>9783540366058</isbn><isbn>3540366059</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2003</creationdate><recordtype>book_chapter</recordtype><recordid>eNo9kL1PwzAQxc2nKNCdsQuj4exL7HhEFV9Sqw7Q2XIcB1zSpMQuEvz1OKVieae793s3PEKuGNwwAHmLNM-AohCQU6V5fkDGShaYjrtbcUhGTDBGETN1RM4HA0BJAcdkBAicKpnhKRkpzLliiHBGxiGsEgTI085GZPq49ZVv3yYvSRpHF-XK2ei_3GSxiX7tf0z0XTtZhoGZb5voafePzF1876pwSU5q0wQ33s8Lsny4f50-0dni8Xl6N6MWWR5prfLKCWFlzionFdq6GqRQlpUsM7JWhcksM8ZZKUwuoDSZ4slHLBElwwty_fd3Y4I1Td2b1vqgN71fm_5bs6zIGEdM3M0fF5LVvrlel133ETQDPdSqUaei9K5CPdSaArh_3HefWxeidkPCujb2prHvZhNdHzSCRACukWteCPwFDmx1AA</recordid><startdate>2003</startdate><enddate>2003</enddate><creator>Jensen, Mikkel T.</creator><general>Springer Berlin / Heidelberg</general><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>FFUUA</scope><scope>IQODW</scope></search><sort><creationdate>2003</creationdate><title>Guiding Single-Objective Optimization Using Multi-objective Methods</title><author>Jensen, Mikkel T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c315t-f95de66c751de793cfd93cf89c1b14a7f98a4c1aaec76a560ba492f8933b33713</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Good Building Block</topic><topic>Multiobjective Optimization</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Problem Instance</topic><topic>Scheduling, sequencing</topic><topic>Theoretical computing</topic><topic>Traditional Algorithm</topic><topic>Travelling Salesperson Problem</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jensen, Mikkel T.</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jensen, Mikkel T.</au><au>Cardalda, Juan J. Romero</au><au>Corne, David W</au><au>Meyer, Jean-Arcady</au><au>Gottlieb, Jens</au><au>Johnson, Colin G</au><au>Guillot, Agnes</au><au>Hart, Emma</au><au>Raidl, Günther</au><au>Marchiori, Elena</au><au>Cagnoni, Stefano</au><au>Middendorf, Martin</au><au>Cardalda, Juan J. Romero</au><au>Corne, David W.</au><au>Meyer, Jean-Arcady</au><au>Guillot, Agnès</au><au>Johnson, Colin G.</au><au>Marchiori, Elena</au><au>Gottlieb, Jens</au><au>Cagnoni, Stefano</au><au>Raidl, Günther R.</au><au>Hart, Emma</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Guiding Single-Objective Optimization Using Multi-objective Methods</atitle><btitle>Applications of Evolutionary Computing</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2003</date><risdate>2003</risdate><volume>2611</volume><spage>268</spage><epage>279</epage><pages>268-279</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540009760</isbn><isbn>9783540009764</isbn><eisbn>9783540366058</eisbn><eisbn>3540366059</eisbn><abstract>This paper investigates the possibility of using multi-objective methods to guide the search when solving single-objective optimization problems with genetic algorithms.Using the job shop scheduling problem as an example,experiments demonstrate that by using helper-objectives (additional objectives guiding the search),the average performance of a standard GA can be significantly improved.The helper-objectives guide the search towards solutions containing good building blocks and helps the algorithm avoid local optima.The experiments reveal that the approach only works if the number of helper-objectives used simultaneously is low.However,a high number of helper-objectives can be used in the same run by changing the helper-objectives dynamically.</abstract><cop>Germany</cop><pub>Springer Berlin / Heidelberg</pub><doi>10.1007/3-540-36605-9_25</doi><oclcid>935291330</oclcid><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Applications of Evolutionary Computing, 2003, Vol.2611, p.268-279
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_14841233
source Springer Books
subjects Algorithmics. Computability. Computer arithmetics
Applied sciences
Computer science
control theory
systems
Exact sciences and technology
Good Building Block
Multiobjective Optimization
Operational research and scientific management
Operational research. Management science
Problem Instance
Scheduling, sequencing
Theoretical computing
Traditional Algorithm
Travelling Salesperson Problem
title Guiding Single-Objective Optimization Using Multi-objective Methods
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T10%3A36%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Guiding%20Single-Objective%20Optimization%20Using%20Multi-objective%20Methods&rft.btitle=Applications%20of%20Evolutionary%20Computing&rft.au=Jensen,%20Mikkel%20T.&rft.date=2003&rft.volume=2611&rft.spage=268&rft.epage=279&rft.pages=268-279&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540009760&rft.isbn_list=9783540009764&rft_id=info:doi/10.1007/3-540-36605-9_25&rft_dat=%3Cproquest_pasca%3EEBC3073002_32_286%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540366058&rft.eisbn_list=3540366059&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC3073002_32_286&rft_id=info:pmid/&rfr_iscdi=true