Lattice Reduction by Random Sampling and Birthday Methods

We present a novel practical algorithm that given a lattice basis b1, ..., bn finds in O(n2( k/6 )k/4) average time a shorter vector than b1 provided that b1 is ( k/6 )n/(2k) times longer than the length of the shortest, nonzero lattice vector. We assume that the given basis b1, ..., bn has an ortho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Schnorr, Claus Peter
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 156
container_issue
container_start_page 145
container_title
container_volume 2607
creator Schnorr, Claus Peter
description We present a novel practical algorithm that given a lattice basis b1, ..., bn finds in O(n2( k/6 )k/4) average time a shorter vector than b1 provided that b1 is ( k/6 )n/(2k) times longer than the length of the shortest, nonzero lattice vector. We assume that the given basis b1, ..., bn has an orthogonal basis that is typical for worst case lattice bases. The new reduction method samples short lattice vectors in high dimensional sublattices, it advances in sporadic big jumps. It decreases the approximation factor achievable in a given time by known methods to less than its fourth-th root. We further speed up the new method by the simple and the general birthday method.
doi_str_mv 10.1007/3-540-36494-3_14
format Book Chapter
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_14724974</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC3071509_19_160</sourcerecordid><originalsourceid>FETCH-LOGICAL-j334t-f8c0598891be2a8d42c8bc690fa7b23c8e8cfc3a6725aace3b9ba9518fbf5c9f3</originalsourceid><addsrcrecordid>eNotkMtPwzAMxsNTjLE7x144Fpw4aZMjTLykISQe58hNU9axtaMJh_33ZBuSJcv250_2j7FLDtccoLzBXEnIsZBG5mi5PGDnmDq7Bh6yES84zxGlOdoPAAqBcMxGgCByU0o8ZSODShgopDpjkxAWSQQoCq3KETMzirF1Pnvz9a-Lbd9l1SZ7o67uV9k7rdbLtvvKUpndtUOc17TJXnyc93W4YCcNLYOf_Ocx-3y4_5g-5bPXx-fp7SxfpLNi3mgHymhteOUF6VoKpytXGGiorAQ67bVrHFJRCkXkPFamIqO4bqpGOdPgmF3tfdcUHC2bgTrXBrse2hUNm4SkFHL755hd73UhjbovP9iq77-D5WC3JC3ahMfuwNktybSA_8ZD__PrQ7R-u-F8Fwdaujmtox-CRSi5AmN5igLwD4LfcNM</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC3071509_19_160</pqid></control><display><type>book_chapter</type><title>Lattice Reduction by Random Sampling and Birthday Methods</title><source>Springer Books</source><creator>Schnorr, Claus Peter</creator><contributor>Alt, Helmut ; Habib, Michel</contributor><creatorcontrib>Schnorr, Claus Peter ; Alt, Helmut ; Habib, Michel</creatorcontrib><description>We present a novel practical algorithm that given a lattice basis b1, ..., bn finds in O(n2( k/6 )k/4) average time a shorter vector than b1 provided that b1 is ( k/6 )n/(2k) times longer than the length of the shortest, nonzero lattice vector. We assume that the given basis b1, ..., bn has an orthogonal basis that is typical for worst case lattice bases. The new reduction method samples short lattice vectors in high dimensional sublattices, it advances in sporadic big jumps. It decreases the approximation factor achievable in a given time by known methods to less than its fourth-th root. We further speed up the new method by the simple and the general birthday method.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540006230</identifier><identifier>ISBN: 9783540006237</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540364943</identifier><identifier>EISBN: 9783540364948</identifier><identifier>DOI: 10.1007/3-540-36494-3_14</identifier><identifier>OCLC: 935290645</identifier><identifier>LCCallNum: QA75.5-76.95</identifier><language>eng</language><publisher>Germany: Springer Berlin / Heidelberg</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Computer science; control theory; systems ; Exact sciences and technology ; Geometric Series ; Lattice Basis ; Lattice Reduction ; Lattice Vector ; Sample Algorithm ; Theoretical computing</subject><ispartof>Lecture notes in computer science, 2003, Vol.2607, p.145-156</ispartof><rights>Springer-Verlag Berlin Heidelberg 2003</rights><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/3071509-l.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/3-540-36494-3_14$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/3-540-36494-3_14$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4036,4037,27902,38232,41418,42487</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14724974$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Alt, Helmut</contributor><contributor>Habib, Michel</contributor><creatorcontrib>Schnorr, Claus Peter</creatorcontrib><title>Lattice Reduction by Random Sampling and Birthday Methods</title><title>Lecture notes in computer science</title><description>We present a novel practical algorithm that given a lattice basis b1, ..., bn finds in O(n2( k/6 )k/4) average time a shorter vector than b1 provided that b1 is ( k/6 )n/(2k) times longer than the length of the shortest, nonzero lattice vector. We assume that the given basis b1, ..., bn has an orthogonal basis that is typical for worst case lattice bases. The new reduction method samples short lattice vectors in high dimensional sublattices, it advances in sporadic big jumps. It decreases the approximation factor achievable in a given time by known methods to less than its fourth-th root. We further speed up the new method by the simple and the general birthday method.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Geometric Series</subject><subject>Lattice Basis</subject><subject>Lattice Reduction</subject><subject>Lattice Vector</subject><subject>Sample Algorithm</subject><subject>Theoretical computing</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540006230</isbn><isbn>9783540006237</isbn><isbn>3540364943</isbn><isbn>9783540364948</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2003</creationdate><recordtype>book_chapter</recordtype><recordid>eNotkMtPwzAMxsNTjLE7x144Fpw4aZMjTLykISQe58hNU9axtaMJh_33ZBuSJcv250_2j7FLDtccoLzBXEnIsZBG5mi5PGDnmDq7Bh6yES84zxGlOdoPAAqBcMxGgCByU0o8ZSODShgopDpjkxAWSQQoCq3KETMzirF1Pnvz9a-Lbd9l1SZ7o67uV9k7rdbLtvvKUpndtUOc17TJXnyc93W4YCcNLYOf_Ocx-3y4_5g-5bPXx-fp7SxfpLNi3mgHymhteOUF6VoKpytXGGiorAQ67bVrHFJRCkXkPFamIqO4bqpGOdPgmF3tfdcUHC2bgTrXBrse2hUNm4SkFHL755hd73UhjbovP9iq77-D5WC3JC3ahMfuwNktybSA_8ZD__PrQ7R-u-F8Fwdaujmtox-CRSi5AmN5igLwD4LfcNM</recordid><startdate>2003</startdate><enddate>2003</enddate><creator>Schnorr, Claus Peter</creator><general>Springer Berlin / Heidelberg</general><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>FFUUA</scope><scope>IQODW</scope></search><sort><creationdate>2003</creationdate><title>Lattice Reduction by Random Sampling and Birthday Methods</title><author>Schnorr, Claus Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j334t-f8c0598891be2a8d42c8bc690fa7b23c8e8cfc3a6725aace3b9ba9518fbf5c9f3</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Geometric Series</topic><topic>Lattice Basis</topic><topic>Lattice Reduction</topic><topic>Lattice Vector</topic><topic>Sample Algorithm</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schnorr, Claus Peter</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schnorr, Claus Peter</au><au>Alt, Helmut</au><au>Habib, Michel</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Lattice Reduction by Random Sampling and Birthday Methods</atitle><btitle>Lecture notes in computer science</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2003</date><risdate>2003</risdate><volume>2607</volume><spage>145</spage><epage>156</epage><pages>145-156</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540006230</isbn><isbn>9783540006237</isbn><eisbn>3540364943</eisbn><eisbn>9783540364948</eisbn><abstract>We present a novel practical algorithm that given a lattice basis b1, ..., bn finds in O(n2( k/6 )k/4) average time a shorter vector than b1 provided that b1 is ( k/6 )n/(2k) times longer than the length of the shortest, nonzero lattice vector. We assume that the given basis b1, ..., bn has an orthogonal basis that is typical for worst case lattice bases. The new reduction method samples short lattice vectors in high dimensional sublattices, it advances in sporadic big jumps. It decreases the approximation factor achievable in a given time by known methods to less than its fourth-th root. We further speed up the new method by the simple and the general birthday method.</abstract><cop>Germany</cop><pub>Springer Berlin / Heidelberg</pub><doi>10.1007/3-540-36494-3_14</doi><oclcid>935290645</oclcid><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Lecture notes in computer science, 2003, Vol.2607, p.145-156
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_14724974
source Springer Books
subjects Algorithmics. Computability. Computer arithmetics
Applied sciences
Computer science
control theory
systems
Exact sciences and technology
Geometric Series
Lattice Basis
Lattice Reduction
Lattice Vector
Sample Algorithm
Theoretical computing
title Lattice Reduction by Random Sampling and Birthday Methods
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T09%3A59%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Lattice%20Reduction%20by%20Random%20Sampling%20and%20Birthday%20Methods&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=Schnorr,%20Claus%20Peter&rft.date=2003&rft.volume=2607&rft.spage=145&rft.epage=156&rft.pages=145-156&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540006230&rft.isbn_list=9783540006237&rft_id=info:doi/10.1007/3-540-36494-3_14&rft_dat=%3Cproquest_pasca%3EEBC3071509_19_160%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540364943&rft.eisbn_list=9783540364948&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC3071509_19_160&rft_id=info:pmid/&rfr_iscdi=true